Comparative assessment of fermentative capacity of different xylose-consuming yeasts

Abstract Background Understanding the effects of oxygen levels on yeast xylose metabolism would benefit ethanol production. In this work, xylose fermentative capacity of Scheffersomyces stipitis, Spathaspora passalidarum, Spathaspora arborariae and Candida tenuis was systematically compared under ae...

Full description

Bibliographic Details
Main Authors: Henrique César Teixeira Veras, Nádia Skorupa Parachin, João Ricardo Moreira Almeida
Format: Article
Language:English
Published: BMC 2017-09-01
Series:Microbial Cell Factories
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12934-017-0766-x
Description
Summary:Abstract Background Understanding the effects of oxygen levels on yeast xylose metabolism would benefit ethanol production. In this work, xylose fermentative capacity of Scheffersomyces stipitis, Spathaspora passalidarum, Spathaspora arborariae and Candida tenuis was systematically compared under aerobic, oxygen-limited and anaerobic conditions. Results Fermentative performances of the four yeasts were greatly influenced by oxygen availability. S. stipitis and S. passalidarum showed the highest ethanol yields (above 0.44 g g−1) under oxygen limitation. However, S. passalidarum produced 1.5 times more ethanol than S. stipitis under anaerobiosis. While C. tenuis showed the lowest xylose consumption rate and incapacity to produce ethanol, S. arborariae showed an intermediate fermentative performance among the yeasts. NAD(P)H xylose reductase (XR) activity in crude cell extracts correlated with xylose consumption rates and ethanol production. Conclusions Overall, the present work demonstrates that the availability of oxygen influences the production of ethanol by yeasts and indicates that the NADH-dependent XR activity is a limiting step on the xylose metabolism. S. stipitis and S. passalidarum have the greatest potential for ethanol production from xylose. Both yeasts showed similar ethanol yields near theoretical under oxygen-limited condition. Besides that, S. passalidarum showed the best xylose consumption and ethanol production under anaerobiosis.
ISSN:1475-2859