Summary: | <p>Abstract</p> <p>Background</p> <p>Heat shock protein 90 (HSP90) inhibitors have emerged as a promising class of anti-cancer drugs in both solid and hematologic malignancies. The HSP90 family includes the cytosolic HSP90 (HSP90AA1), the ER paralogue gp96 (HSP90B1) and the mitochondrial member TRAP1 (HSP90L). We evaluated the <it>in vitro </it>anti-tumor activity and mechanism of action of PU-H71, a novel purine scaffold HSP90 inhibitor in human multiple myeloma cell lines.</p> <p>Methods</p> <p>Multiple human myeloma cell lines including cells that are resistant to corticosteroids and bortezimab were treated with PU-H71, followed by analysis of cell viability, cell cycle progression and apoptosis, by flow cytometry and caspase 3 immunoblot. Induction of unfolded protein response was studied by XBP-1 s immunoblot. The role of gp96 was further assessed by small hairpin RNA knockdown of gp96 before treatment with PU-H71.</p> <p>Results</p> <p>PU-H71 has potent <it>in vitro </it>anti-myeloma activity in both drug-sensitive and drug-resistant cell lines. PU-H71 activates the unfolded protein response and induces caspase-dependent apoptosis. The stable gp96 knockdown human myeloma cell line was found to be more resistant to PU-H71 and other HSP90 inhibitors including 17-AAG and 17-DMAG, even though these cells are more sensitive to conventional anti-myeloma drugs.</p> <p>Conclusion</p> <p>We conclude that PU-H71 is a promising drug for the treatment of myeloma. Our finding further suggests that PU-H71 and the geldanamycin analogues work in part by inhibiting the endoplasmic reticulum gp96 along with the cytosolic HSP90.</p>
|