Read-the-game: System for skill-based visual exploratory activity assessment with a full body virtual reality soccer simulation.

We present a novel virtual reality (VR) system to measure soccer players' read-the-game ability. Read-the-game is a term that encompasses a conglomerate of visual exploratory behavioral patterns and cognitive elements required to make accurate in-game decisions. Our technological approach in th...

Full description

Bibliographic Details
Main Authors: César Daniel Rojas Ferrer, Hidehiko Shishido, Itaru Kitahara, Yoshinari Kameda
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0230042
Description
Summary:We present a novel virtual reality (VR) system to measure soccer players' read-the-game ability. Read-the-game is a term that encompasses a conglomerate of visual exploratory behavioral patterns and cognitive elements required to make accurate in-game decisions. Our technological approach in the Sports Science domain focuses on the visuomotor component of targeted skill development in a VR simulation because VR is a powerful perception-action coupling training solution for visuomotor coordination due to its high sense of immersion and its psychological byproduct presence. Additionally, we analyze two critical aspects: psychological (i.e., sense of presence) and the human-computer interaction (HCI) domain (i.e., suitable input device for full-body immersion). To measure head movements related to visual explorations, the system tracks the user's head excursions. Specifically, the engaged visual exploratory activity (VEA) during a VR simulation is measured frame-by-frame at runtime to study the behavior of players making passing decisions while experiencing pressure from rivals during in-game situations recreated with computer graphics (CG). Additionally, the sense of presence elicited by our system is measured via the Igroup Presence Questionnaire applied to beginner and amateur soccer players (n = 24). Regarding the HCI aspect, a comparison of input options reveals that a high presence can be achieved when using full body interactions that integrate head and body motions via a combination of an HMD and kinetic body tracking. During our system verification, a difference in the VEA performance is observed between beginner and amateur players. Moreover, we demonstrate the capacity of the system to measure the VEA while evoking immersive soccer in-match experiences with a portable VR setup.
ISSN:1932-6203