Probabilistic Linguistic Power Aggregation Operators for Multi-Criteria Group Decision Making

As an effective aggregation tool, power average (PA) allows the input arguments being aggregated to support and reinforce each other, which provides more versatility in the information aggregation process. Under the probabilistic linguistic term environment, we deeply investigate the new power aggre...

Full description

Bibliographic Details
Main Authors: Agbodah Kobina, Decui Liang, Xin He
Format: Article
Language:English
Published: MDPI AG 2017-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/9/12/320
Description
Summary:As an effective aggregation tool, power average (PA) allows the input arguments being aggregated to support and reinforce each other, which provides more versatility in the information aggregation process. Under the probabilistic linguistic term environment, we deeply investigate the new power aggregation (PA) operators for fusing the probabilistic linguistic term sets (PLTSs). In this paper, we firstly develop the probabilistic linguistic power average (PLPA), the weighted probabilistic linguistic power average (WPLPA) operators, the probabilistic linguistic power geometric (PLPG) and the weighted probabilistic linguistic power geometric (WPLPG) operators. At the same time, we carefully analyze the properties of these new aggregation operators. With the aid of the WPLPA and WPLPG operators, we further design the approaches for the application of multi-criteria group decision-making (MCGDM) with PLTSs. Finally, we use an illustrated example to expound our proposed methods and verify their performances.
ISSN:2073-8994