Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning

We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured...

Full description

Bibliographic Details
Main Authors: Yuntian Feng, Hongjun Zhang, Wenning Hao, Gang Chen
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Computational Intelligence and Neuroscience
Online Access:http://dx.doi.org/10.1155/2017/7643065
Description
Summary:We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q-Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score.
ISSN:1687-5265
1687-5273