Trehalose maintains vitality of mouse epididymal epithelial cells and mediates gene transfer.

In the present study, trehalose was utilized to improve primary culture of mouse epididymal epithelial cells in vitro, and to enhance naked DNA delivery in epididymis in vivo. During the six-day culture, the proliferation activity of the cells in the medium with addition of trehalose was higher than...

Full description

Bibliographic Details
Main Authors: Bin Qu, Yihua Gu, Jian Shen, Jinzhou Qin, Jianqiang Bao, Yuan Hu, Wenxian Zeng, Wuzi Dong
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3961358?pdf=render
Description
Summary:In the present study, trehalose was utilized to improve primary culture of mouse epididymal epithelial cells in vitro, and to enhance naked DNA delivery in epididymis in vivo. During the six-day culture, the proliferation activity of the cells in the medium with addition of trehalose was higher than that of those cells cultured in absence of trehalose (p<0.01). To determine the optimal concentration for cell proliferation, a series of trehalose concentrations (0, 60, 120, 180 mM) were tested, and the result indicated that the cell in the medium with 120 mM trehalose showed the highest proliferation potential. The epididymis epithelial cells were cultured in the medium containing 120 mM trehalose upon 16th passage, and they continued expressing markers of epididymal epithelial cell, such as rE-RABP, AR and ER-beta. Our study also indicated that trehalose concentrations of 120-240 mM, especially 180 mM, could effectively enhance DNA delivery into the mouse epididymis epithelial cell in vitro. Moreover, trehalose could induce in vivo expression of exogenous DNA in epididymal epithelial cells and help to internalize plasmid into sperm,which did not influence motility of sperm when the mixture of trehalose (180 mM) and DNA was injected into epididymal lumen through efferent tubule. This study suggested that trehalose, as an effective and safer reagent, could be employed potentially to maintain vitality of mouse epididymal epithelial cells during long-term culture in vitro and to mediate in vitro and in vivo gene transfer.
ISSN:1932-6203