Low-Radiation-Dose Modified Small Bowel CT for Evaluation of Recurrent Crohn's Disease
Crohn's disease affects any part of the GI tract, commonly the terminal ileum. To decrease radiation exposure we developed a low-radiation-dose unenhanced CT (modified small Bowel CT, MBCT) to evaluate the small bowel using hyperdense oral contrast. Technique. MBCT was investigated in patients...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Gastroenterology Research and Practice |
Online Access: | http://dx.doi.org/10.1155/2012/598418 |
Summary: | Crohn's disease affects any part of the GI tract, commonly the terminal ileum. To decrease radiation exposure we developed a low-radiation-dose unenhanced CT (modified small Bowel CT, MBCT) to evaluate the small bowel using hyperdense oral contrast. Technique. MBCT was investigated in patients with pathologically proven Crohn's disease presenting with new symptoms from recurrent inflammation or stricture. After ethics board approval, 98 consecutive patients were retrospectively evaluated. Kappa values from two independent reviewers were calculated for presence of obstruction, active inflammation versus chronic stricture, and ancillary findings. Forty-two patients underwent surgery or colonoscopy within 3 months. Results. Kappa was 0.84 for presence of abnormality versus a normal exam and 0.89 for differentiating active inflammation from chronic stricture. Level of agreement for presence of skip areas, abscess formation, and fistula was 0.62, 0.75, and 0.78, respectively. In the subset with “gold standard” follow-up, there was 83% agreement. Conclusions. MBCT is a low-radiation technique with good to very good interobserver agreement for determining presence of obstruction and degree of disease activity in patients with Crohn's disease. Further investigation is required to refine parameters of disease activity compared to CT enterography and small bowel follow through. |
---|---|
ISSN: | 1687-6121 1687-630X |