Tropical forest degradation and recovery in fragmented landscapes — Simulating changes in tree community, forest hydrology and carbon balance

Empirical studies on severely fragmented regions suggest that decades after fragmentation, forest edges located near human-modified areas exhibit the structure of early successional states, with lower biomass per area and higher mortality compared to non-edge areas. These habitat changes (edge effec...

Full description

Bibliographic Details
Main Authors: M. Dantas de Paula, J. Groeneveld, A. Huth
Format: Article
Language:English
Published: Elsevier 2015-01-01
Series:Global Ecology and Conservation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S235198941500030X
Description
Summary:Empirical studies on severely fragmented regions suggest that decades after fragmentation, forest edges located near human-modified areas exhibit the structure of early successional states, with lower biomass per area and higher mortality compared to non-edge areas. These habitat changes (edge effects) can also have a considerable impact on ecosystem processes such as carbon and water balance, which in turn have a major impact on human activities. Using field data from a long-term fragmented landscape in the Brazilian Northeastern Atlantic Forest, and the Forest Model FORMIND, we were able to visualize the time scale in which edge effects influence tropical forests by performing 500-year simulations. We observed changes in community composition, aboveground biomass, total evapotranspiration and total runoff. Averages from ten four-hectare simulations show forest biomass degradation lasting around 100 years. If edge effects cease, recovery of biomass lasts around 150 years. Carbon loss is especially intense during the first five years after fragmentation, resulting in a decline of over 5 Mg ha−1y−1 C. Finally, edges of large fragments face an evapotranspiration loss of 43% and total runoff gains of 57% in relation to core areas of large fragments, suggesting that fragmented landscapes can be of significantly lower value in terms of ecosystem services.
ISSN:2351-9894