Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences

Soft magnetic materials are characterized by achieving a high magnetic induction value in the presence of a small magnetic field. Common applications of these materials, such as transformers or sensors, are in constant evolution and new requirements are becoming more demanding. Nickel and its alloys...

Full description

Bibliographic Details
Main Authors: Ana Romero, Angel L. Morales, Gemma Herranz
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/4/643
id doaj-9377e2035b224ceda7656011c27e4877
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Ana Romero
Angel L. Morales
Gemma Herranz
spellingShingle Ana Romero
Angel L. Morales
Gemma Herranz
Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences
Metals
nickel
metal injection moulding
hot isostatic pressing
sintering atmosphere
soft magnetic alloy
magnetomechanical properties
author_facet Ana Romero
Angel L. Morales
Gemma Herranz
author_sort Ana Romero
title Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences
title_short Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences
title_full Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences
title_fullStr Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences
title_full_unstemmed Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences
title_sort enhancing properties of soft magnetic materials: a study into hot isostatic pressing and sintering atmosphere influences
publisher MDPI AG
series Metals
issn 2075-4701
publishDate 2021-04-01
description Soft magnetic materials are characterized by achieving a high magnetic induction value in the presence of a small magnetic field. Common applications of these materials, such as transformers or sensors, are in constant evolution and new requirements are becoming more demanding. Nickel and its alloys are employed as smart materials taking advantage of their superior magnetoelastic properties. A metal injection molding (MIM) technique provides high-quality complex-shaped parts with a good density and controlled impurity levels, which are necessary for these applications, by carefully adjusting the sintering stage. Previous investigations have established a sintering cycle for pure nickel consisting of 1325 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C for 12 h within an N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> atmosphere. Nevertheless, microstructural, mechanical and magnetoelastic responses can still be greatly enhanced. In this context, the effects of hot isostatic pressing (HIP), and sintering atmosphere have been investigated. The application of an adequate HIP treatment leads to significant improvements in comparison to the reference sintering process. It achieves almost complete densification while increasing field-dependent elastic modulus from 8.1% up to 9.6%. Additionally, the sintering atmosphere has been proven to be a key factor in reducing impurities and hence facilitating magnetic domain motion. Three different atmospheres have been studied: N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> (with a higher gas flow), N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-10%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-0.1%CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and low vacuum. Minimum carbon contents have been registered using more reducing atmospheres (N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-10%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-0.1%CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>) which has led to values of field-dependent elastic modulus higher than 10%. This value is 2.5 times higher than that obtained when nickel parts are processed via conventional techniques. Moreover, although minimizing carbon content has been shown to be easier and more beneficial than achieving complete densification, both strategies could be used in combination to improve and maximize magnetoelastic performance.
topic nickel
metal injection moulding
hot isostatic pressing
sintering atmosphere
soft magnetic alloy
magnetomechanical properties
url https://www.mdpi.com/2075-4701/11/4/643
work_keys_str_mv AT anaromero enhancingpropertiesofsoftmagneticmaterialsastudyintohotisostaticpressingandsinteringatmosphereinfluences
AT angellmorales enhancingpropertiesofsoftmagneticmaterialsastudyintohotisostaticpressingandsinteringatmosphereinfluences
AT gemmaherranz enhancingpropertiesofsoftmagneticmaterialsastudyintohotisostaticpressingandsinteringatmosphereinfluences
_version_ 1721525999669084160
spelling doaj-9377e2035b224ceda7656011c27e48772021-04-15T23:01:15ZengMDPI AGMetals2075-47012021-04-011164364310.3390/met11040643Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere InfluencesAna Romero0Angel L. Morales1Gemma Herranz2Escuela de Ingeniería Industrial y Aeroespacial, Institute of Applied Aeronautical Industry Research, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, SpainE.T.S.I. Industrial, Institute of Energy Research and Industrial Applications, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, SpainE.T.S.I. Industrial, Institute of Energy Research and Industrial Applications, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, SpainSoft magnetic materials are characterized by achieving a high magnetic induction value in the presence of a small magnetic field. Common applications of these materials, such as transformers or sensors, are in constant evolution and new requirements are becoming more demanding. Nickel and its alloys are employed as smart materials taking advantage of their superior magnetoelastic properties. A metal injection molding (MIM) technique provides high-quality complex-shaped parts with a good density and controlled impurity levels, which are necessary for these applications, by carefully adjusting the sintering stage. Previous investigations have established a sintering cycle for pure nickel consisting of 1325 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C for 12 h within an N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> atmosphere. Nevertheless, microstructural, mechanical and magnetoelastic responses can still be greatly enhanced. In this context, the effects of hot isostatic pressing (HIP), and sintering atmosphere have been investigated. The application of an adequate HIP treatment leads to significant improvements in comparison to the reference sintering process. It achieves almost complete densification while increasing field-dependent elastic modulus from 8.1% up to 9.6%. Additionally, the sintering atmosphere has been proven to be a key factor in reducing impurities and hence facilitating magnetic domain motion. Three different atmospheres have been studied: N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> (with a higher gas flow), N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-10%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-0.1%CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and low vacuum. Minimum carbon contents have been registered using more reducing atmospheres (N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-10%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-0.1%CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>) which has led to values of field-dependent elastic modulus higher than 10%. This value is 2.5 times higher than that obtained when nickel parts are processed via conventional techniques. Moreover, although minimizing carbon content has been shown to be easier and more beneficial than achieving complete densification, both strategies could be used in combination to improve and maximize magnetoelastic performance.https://www.mdpi.com/2075-4701/11/4/643nickelmetal injection mouldinghot isostatic pressingsintering atmospheresoft magnetic alloymagnetomechanical properties