Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences
Soft magnetic materials are characterized by achieving a high magnetic induction value in the presence of a small magnetic field. Common applications of these materials, such as transformers or sensors, are in constant evolution and new requirements are becoming more demanding. Nickel and its alloys...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/11/4/643 |
id |
doaj-9377e2035b224ceda7656011c27e4877 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ana Romero Angel L. Morales Gemma Herranz |
spellingShingle |
Ana Romero Angel L. Morales Gemma Herranz Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences Metals nickel metal injection moulding hot isostatic pressing sintering atmosphere soft magnetic alloy magnetomechanical properties |
author_facet |
Ana Romero Angel L. Morales Gemma Herranz |
author_sort |
Ana Romero |
title |
Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences |
title_short |
Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences |
title_full |
Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences |
title_fullStr |
Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences |
title_full_unstemmed |
Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences |
title_sort |
enhancing properties of soft magnetic materials: a study into hot isostatic pressing and sintering atmosphere influences |
publisher |
MDPI AG |
series |
Metals |
issn |
2075-4701 |
publishDate |
2021-04-01 |
description |
Soft magnetic materials are characterized by achieving a high magnetic induction value in the presence of a small magnetic field. Common applications of these materials, such as transformers or sensors, are in constant evolution and new requirements are becoming more demanding. Nickel and its alloys are employed as smart materials taking advantage of their superior magnetoelastic properties. A metal injection molding (MIM) technique provides high-quality complex-shaped parts with a good density and controlled impurity levels, which are necessary for these applications, by carefully adjusting the sintering stage. Previous investigations have established a sintering cycle for pure nickel consisting of 1325 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C for 12 h within an N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> atmosphere. Nevertheless, microstructural, mechanical and magnetoelastic responses can still be greatly enhanced. In this context, the effects of hot isostatic pressing (HIP), and sintering atmosphere have been investigated. The application of an adequate HIP treatment leads to significant improvements in comparison to the reference sintering process. It achieves almost complete densification while increasing field-dependent elastic modulus from 8.1% up to 9.6%. Additionally, the sintering atmosphere has been proven to be a key factor in reducing impurities and hence facilitating magnetic domain motion. Three different atmospheres have been studied: N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> (with a higher gas flow), N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-10%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-0.1%CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and low vacuum. Minimum carbon contents have been registered using more reducing atmospheres (N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-10%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-0.1%CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>) which has led to values of field-dependent elastic modulus higher than 10%. This value is 2.5 times higher than that obtained when nickel parts are processed via conventional techniques. Moreover, although minimizing carbon content has been shown to be easier and more beneficial than achieving complete densification, both strategies could be used in combination to improve and maximize magnetoelastic performance. |
topic |
nickel metal injection moulding hot isostatic pressing sintering atmosphere soft magnetic alloy magnetomechanical properties |
url |
https://www.mdpi.com/2075-4701/11/4/643 |
work_keys_str_mv |
AT anaromero enhancingpropertiesofsoftmagneticmaterialsastudyintohotisostaticpressingandsinteringatmosphereinfluences AT angellmorales enhancingpropertiesofsoftmagneticmaterialsastudyintohotisostaticpressingandsinteringatmosphereinfluences AT gemmaherranz enhancingpropertiesofsoftmagneticmaterialsastudyintohotisostaticpressingandsinteringatmosphereinfluences |
_version_ |
1721525999669084160 |
spelling |
doaj-9377e2035b224ceda7656011c27e48772021-04-15T23:01:15ZengMDPI AGMetals2075-47012021-04-011164364310.3390/met11040643Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere InfluencesAna Romero0Angel L. Morales1Gemma Herranz2Escuela de Ingeniería Industrial y Aeroespacial, Institute of Applied Aeronautical Industry Research, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, SpainE.T.S.I. Industrial, Institute of Energy Research and Industrial Applications, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, SpainE.T.S.I. Industrial, Institute of Energy Research and Industrial Applications, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, SpainSoft magnetic materials are characterized by achieving a high magnetic induction value in the presence of a small magnetic field. Common applications of these materials, such as transformers or sensors, are in constant evolution and new requirements are becoming more demanding. Nickel and its alloys are employed as smart materials taking advantage of their superior magnetoelastic properties. A metal injection molding (MIM) technique provides high-quality complex-shaped parts with a good density and controlled impurity levels, which are necessary for these applications, by carefully adjusting the sintering stage. Previous investigations have established a sintering cycle for pure nickel consisting of 1325 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C for 12 h within an N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> atmosphere. Nevertheless, microstructural, mechanical and magnetoelastic responses can still be greatly enhanced. In this context, the effects of hot isostatic pressing (HIP), and sintering atmosphere have been investigated. The application of an adequate HIP treatment leads to significant improvements in comparison to the reference sintering process. It achieves almost complete densification while increasing field-dependent elastic modulus from 8.1% up to 9.6%. Additionally, the sintering atmosphere has been proven to be a key factor in reducing impurities and hence facilitating magnetic domain motion. Three different atmospheres have been studied: N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> (with a higher gas flow), N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-10%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-0.1%CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and low vacuum. Minimum carbon contents have been registered using more reducing atmospheres (N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-5%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-10%H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-0.1%CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>) which has led to values of field-dependent elastic modulus higher than 10%. This value is 2.5 times higher than that obtained when nickel parts are processed via conventional techniques. Moreover, although minimizing carbon content has been shown to be easier and more beneficial than achieving complete densification, both strategies could be used in combination to improve and maximize magnetoelastic performance.https://www.mdpi.com/2075-4701/11/4/643nickelmetal injection mouldinghot isostatic pressingsintering atmospheresoft magnetic alloymagnetomechanical properties |