Optical Fiber Sensor Performance Evaluation in Soft Polyimide Film with Different Thickness Ratios

To meet the application requirements of curvature measurement for soft biomedical robotics and flexible morphing wings of aircraft, the optical fiber Bragg grating (FBG) shape sensor for soft robots and flexible morphing wing was implemented. This optical FBG is embedded in polyimide film and then f...

Full description

Bibliographic Details
Main Authors: Yanlin He, Xu Zhang, Lianqing Zhu, Guangkai Sun, Xiaoping Lou, Mingli Dong
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/4/790
Description
Summary:To meet the application requirements of curvature measurement for soft biomedical robotics and flexible morphing wings of aircraft, the optical fiber Bragg grating (FBG) shape sensor for soft robots and flexible morphing wing was implemented. This optical FBG is embedded in polyimide film and then fixed in the body of a soft robot and morphing wing. However, a lack of analysis on the embedded depth of FBG sensors in polyimide film and its sensitivity greatly limits their application potential. Herein, the relationship between the embedded depth of the FBG sensor in polyimide film and its sensitivity and stability are investigated. The sensing principle and structural design of the FBG sensor embedded in polyimide film are introduced; the bending curvatures of the FBG sensor and its wavelength shift in polyimide film are studied; and the relationship between the sensitivity, stability, and embedded depth of these sensors are verified experimentally. The results showed that wavelength shift and curvature have a linear relationship. With the sensor&#8217;s curvature ranging from 0 m<sup>&#8722;1</sup> to 30 m<sup>&#8722;1</sup>, their maximum sensitivity is 50.65 pm/m<sup>&#8722;1</sup>, and their minimum sensitivity is 1.96 pm/m<sup>&#8722;1</sup>. The designed FBG sensor embedded in polyimide films shows good consistency in repeated experiments for soft actuator and morphing wing measurement; the FBG sensing method therefore has potential for real applications in shape monitoring in the fields of soft robotics and the flexible morphing wings of aircraft.
ISSN:1424-8220