Robot DE NIRO: A Human-Centered, Autonomous, Mobile Research Platform for Cognitively-Enhanced Manipulation

We introduce Robot DE NIRO, an autonomous, collaborative, humanoid robot for mobile manipulation. We built DE NIRO to perform a wide variety of manipulation behaviors, with a focus on pick-and-place tasks. DE NIRO is designed to be used in a domestic environment, especially in support of caregivers...

Full description

Bibliographic Details
Main Authors: Fabian Falck, Sagar Doshi, Marion Tormento, Gor Nersisyan, Nico Smuts, John Lingi, Kim Rants, Roni Permana Saputra, Ke Wang, Petar Kormushev
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-07-01
Series:Frontiers in Robotics and AI
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/frobt.2020.00066/full
Description
Summary:We introduce Robot DE NIRO, an autonomous, collaborative, humanoid robot for mobile manipulation. We built DE NIRO to perform a wide variety of manipulation behaviors, with a focus on pick-and-place tasks. DE NIRO is designed to be used in a domestic environment, especially in support of caregivers working with the elderly. Given this design focus, DE NIRO can interact naturally, reliably, and safely with humans, autonomously navigate through environments on command, intelligently retrieve or move target objects, and avoid collisions efficiently. We describe DE NIRO's hardware and software, including an extensive vision sensor suite of 2D and 3D LIDARs, a depth camera, and a 360-degree camera rig; two types of custom grippers; and a custom-built exoskeleton called DE VITO. We demonstrate DE NIRO's manipulation capabilities in three illustrative challenges: First, we have DE NIRO perform a fetch-an-object challenge. Next, we add more cognition to DE NIRO's object recognition and grasping abilities, confronting it with small objects of unknown shape. Finally, we extend DE NIRO's capabilities into dual-arm manipulation of larger objects. We put particular emphasis on the features that enable DE NIRO to interact safely and naturally with humans. Our contribution is in sharing how a humanoid robot with complex capabilities can be designed and built quickly with off-the-shelf hardware and open-source software. Supplementary Material including our code, a documentation, videos and the CAD models of several hardware parts are openly available at https://www.imperial.ac.uk/robot-intelligence/software/.
ISSN:2296-9144