Bayesian inference for diffusion processes: using higher-order approximations for transition densities
Modelling random dynamical systems in continuous time, diffusion processes are a powerful tool in many areas of science. Model parameters can be estimated from time-discretely observed processes using Markov chain Monte Carlo (MCMC) methods that introduce auxiliary data. These methods typically appr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Royal Society
2020-10-01
|
Series: | Royal Society Open Science |
Subjects: | |
Online Access: | https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.200270 |