Teaching an Old Poly(arylene ether) New Tricks: Efficient Blue Thermally Activated Delayed Fluorescence

Summary: Polymer light-emitting diodes are attractive for optoelectronic applications owing to their brightness and ease of processing. However, often metals have to be inserted to increase the luminescence efficiency, and producing blue emitters is a challenge. Here we present a strategy to make bl...

Full description

Bibliographic Details
Main Authors: Xinrui Liu, Jiancheng Rao, Xuefei Li, Shumeng Wang, Junqiao Ding, Lixiang Wang
Format: Article
Language:English
Published: Elsevier 2019-05-01
Series:iScience
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004219301178
Description
Summary:Summary: Polymer light-emitting diodes are attractive for optoelectronic applications owing to their brightness and ease of processing. However, often metals have to be inserted to increase the luminescence efficiency, and producing blue emitters is a challenge. Here we present a strategy to make blue thermally activated delayed fluorescence (TADF) polymers by directly embedding a small molecular blue TADF emitter into a poly(aryl ether) (PAE) backbone. Thanks to the oxygen-induced negligible electronic communication between neighboring TADF fragments, its corresponding blue delayed fluorescence can be inherited by the developed polymers. These polymers are free from metal catalyst contamination and show improved thermal stability. Through device optimization, a current efficiency of 29.7 cd/A (21.2 lm/W, 13.2%) is realized together with Commission Internationale de L'Eclairage coordinates of (0.18, 0.32). The value is competitive with blue phosphorescent polymers, highlighting the importance of the PAE backbone in achieving high-performance blue delayed fluorescence at a macromolecular level. : Chemistry; Polymer Chemistry; Physics; Optoelectronics; Materials Science Subject Areas: Chemistry, Polymer Chemistry, Physics, Optoelectronics, Materials Science
ISSN:2589-0042