Prevalence of afebrile malaria and development of risk-scores for gradation of villages: A study from a hot-spot in Odisha.
INTRODUCTION:Malaria is a public health emergency in India and Odisha. The national malaria elimination programme aims to expedite early identification, treatment and follow-up of malaria cases in hot-spots through a robust health system, besides focusing on efficient vector control. This study, a r...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0221223 |
id |
doaj-93333f58ce4f4c0d9af8f55b925e9032 |
---|---|
record_format |
Article |
spelling |
doaj-93333f58ce4f4c0d9af8f55b925e90322021-03-03T21:08:19ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-01149e022122310.1371/journal.pone.0221223Prevalence of afebrile malaria and development of risk-scores for gradation of villages: A study from a hot-spot in Odisha.Bhuputra PandaMrinal Kar MohapatraSaswati PaitalSreya KumbhakarAmbarish DuttaShridhar KadamSubhash SalunkeM M PradhanAnil KhuranaDebadatta NayakR K ManchandaINTRODUCTION:Malaria is a public health emergency in India and Odisha. The national malaria elimination programme aims to expedite early identification, treatment and follow-up of malaria cases in hot-spots through a robust health system, besides focusing on efficient vector control. This study, a result of mass screening conducted in a hot-spot in Odisha, aimed to assess prevalence, identify and estimate the risks and develop a management tool for malaria elimination. METHODS:Through a cross-sectional study and using WHO recommended Rapid Diagnostic Test (RDT), 13221 individuals were screened. Information about age, gender, education and health practices were collected along with blood sample (5 μl) for malaria testing. Altitude, forestation, availability of a village health worker and distance from secondary health center were captured using panel technique. A multi-level poisson regression model was used to analyze association between risk factors and prevalence of malaria, and to estimate risk scores. RESULTS:The prevalence of malaria was 5.8% and afebrile malaria accounted for 79 percent of all confirmed cases. Higher proportion of Pv infections were afebrile (81%). We found the prevalence to be 1.38 (1.1664-1.6457) times higher in villages where the Accredited Social Health Activist (ASHA) didn't stay; the risk increased by 1.38 (1.0428-1.8272) and 1.92 (1.4428-2.5764) times in mid- and high-altitude tertiles. With regard to forest coverage, villages falling under mid- and highest-tertiles were 2.01 times (1.6194-2.5129) and 2.03 times (1.5477-2.6809), respectively, more likely affected by malaria. Similarly, villages of mid tertile and lowest tertile of education had 1.73 times (1.3392-2.2586) and 2.50 times (2.009-3.1244) higher prevalence of malaria. CONCLUSION:Presence of ASHA worker in villages, altitude, forestation, and education emerged as principal predictors of malaria infection in the study area. An easy-to-use risk-scoring system for ranking villages based on these risk factors could facilitate resource prioritization for malaria elimination.https://doi.org/10.1371/journal.pone.0221223 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bhuputra Panda Mrinal Kar Mohapatra Saswati Paital Sreya Kumbhakar Ambarish Dutta Shridhar Kadam Subhash Salunke M M Pradhan Anil Khurana Debadatta Nayak R K Manchanda |
spellingShingle |
Bhuputra Panda Mrinal Kar Mohapatra Saswati Paital Sreya Kumbhakar Ambarish Dutta Shridhar Kadam Subhash Salunke M M Pradhan Anil Khurana Debadatta Nayak R K Manchanda Prevalence of afebrile malaria and development of risk-scores for gradation of villages: A study from a hot-spot in Odisha. PLoS ONE |
author_facet |
Bhuputra Panda Mrinal Kar Mohapatra Saswati Paital Sreya Kumbhakar Ambarish Dutta Shridhar Kadam Subhash Salunke M M Pradhan Anil Khurana Debadatta Nayak R K Manchanda |
author_sort |
Bhuputra Panda |
title |
Prevalence of afebrile malaria and development of risk-scores for gradation of villages: A study from a hot-spot in Odisha. |
title_short |
Prevalence of afebrile malaria and development of risk-scores for gradation of villages: A study from a hot-spot in Odisha. |
title_full |
Prevalence of afebrile malaria and development of risk-scores for gradation of villages: A study from a hot-spot in Odisha. |
title_fullStr |
Prevalence of afebrile malaria and development of risk-scores for gradation of villages: A study from a hot-spot in Odisha. |
title_full_unstemmed |
Prevalence of afebrile malaria and development of risk-scores for gradation of villages: A study from a hot-spot in Odisha. |
title_sort |
prevalence of afebrile malaria and development of risk-scores for gradation of villages: a study from a hot-spot in odisha. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2019-01-01 |
description |
INTRODUCTION:Malaria is a public health emergency in India and Odisha. The national malaria elimination programme aims to expedite early identification, treatment and follow-up of malaria cases in hot-spots through a robust health system, besides focusing on efficient vector control. This study, a result of mass screening conducted in a hot-spot in Odisha, aimed to assess prevalence, identify and estimate the risks and develop a management tool for malaria elimination. METHODS:Through a cross-sectional study and using WHO recommended Rapid Diagnostic Test (RDT), 13221 individuals were screened. Information about age, gender, education and health practices were collected along with blood sample (5 μl) for malaria testing. Altitude, forestation, availability of a village health worker and distance from secondary health center were captured using panel technique. A multi-level poisson regression model was used to analyze association between risk factors and prevalence of malaria, and to estimate risk scores. RESULTS:The prevalence of malaria was 5.8% and afebrile malaria accounted for 79 percent of all confirmed cases. Higher proportion of Pv infections were afebrile (81%). We found the prevalence to be 1.38 (1.1664-1.6457) times higher in villages where the Accredited Social Health Activist (ASHA) didn't stay; the risk increased by 1.38 (1.0428-1.8272) and 1.92 (1.4428-2.5764) times in mid- and high-altitude tertiles. With regard to forest coverage, villages falling under mid- and highest-tertiles were 2.01 times (1.6194-2.5129) and 2.03 times (1.5477-2.6809), respectively, more likely affected by malaria. Similarly, villages of mid tertile and lowest tertile of education had 1.73 times (1.3392-2.2586) and 2.50 times (2.009-3.1244) higher prevalence of malaria. CONCLUSION:Presence of ASHA worker in villages, altitude, forestation, and education emerged as principal predictors of malaria infection in the study area. An easy-to-use risk-scoring system for ranking villages based on these risk factors could facilitate resource prioritization for malaria elimination. |
url |
https://doi.org/10.1371/journal.pone.0221223 |
work_keys_str_mv |
AT bhuputrapanda prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT mrinalkarmohapatra prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT saswatipaital prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT sreyakumbhakar prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT ambarishdutta prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT shridharkadam prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT subhashsalunke prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT mmpradhan prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT anilkhurana prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT debadattanayak prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha AT rkmanchanda prevalenceofafebrilemalariaanddevelopmentofriskscoresforgradationofvillagesastudyfromahotspotinodisha |
_version_ |
1714818575458369536 |