Summary: | Abstract Background Although the rapid development of diagnosis and treatment has improved prognosis in early breast cancer, challenges from different therapeutic response remain due to breast cancer heterogeneity. DEAD-box helicase 27 (DDX27) had been proved to influence ribosome biogenesis and identified as a promoter in gastric and colorectal cancer associated with stem cell-like properties, while the impact of DDX27 on breast cancer prognosis and biological functions is unclear. We aimed to explore the influence of DDX27 on stem cell-like properties and prognosis in breast cancer. Methods The expression of DDX27 was evaluated in 24 pairs of fresh breast cancer and normal tissue by western blot. We conducted Immunohistochemical (IHC) staining in paraffin sections of 165 breast cancer patients to analyze the expression of DDX27 and its correlation to stemness biomarker. The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) database and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database were used to analyze the expression of DDX27 in breast cancer. Kaplan–Meier survival analysis were used to investigate the implication of DDX27 on breast cancer prognosis. Western blot, CCK-8 assay, Transwell assay and wound-healing assay were carried out to clarify the regulation of DDX27 on stem cell-like properties in breast cancer cells. Gene Set Enrichment Analysis (GSEA) was performed to analyze the potential molecular mechanisms of DDX27 in breast cancer. Results DDX27 was significantly high expressed in breast cancer compared with normal tissue. High expression of DDX27 was related to larger tumor size (p = 0.0005), positive lymph nodes (p = 0.0008), higher histological grade (p = 0.0040), higher ki-67 (p = 0.0063) and later TNM stage (p < 0.0001). Patients with high DDX27 expression turned out a worse prognosis on overall survival (OS, p = 0.0087) and disease-free survival (DFS, p = 0.0235). Overexpression of DDX27 could enhance the expression of biomarkers related to stemness and promote stem cell-like activities such as proliferation and migration in breast cancer cells. Conclusion DDX27 can enhance stem cell-like properties and cause poor prognosis in breast cancer, also may be expected to become a potential biomarker for breast cancer therapy.
|