Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls

In this paper, the high-dimensional linear regression model is considered, where the covariates are measured with additive noise. Different from most of the other methods, which are based on the assumption that the true covariates are fully obtained, results in this paper only require that the corru...

Full description

Bibliographic Details
Main Authors: Xin Li, Dongya Wu
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/6/722
id doaj-931b015e35444cfe8ae67452aab9c0bc
record_format Article
spelling doaj-931b015e35444cfe8ae67452aab9c0bc2021-06-30T23:25:18ZengMDPI AGEntropy1099-43002021-06-012372272210.3390/e23060722Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-BallsXin Li0Dongya Wu1School of Mathematics, Northwest University, Xi’an 710069, ChinaSchool of Information Science and Technology, Northwest University, Xi’an 710069, ChinaIn this paper, the high-dimensional linear regression model is considered, where the covariates are measured with additive noise. Different from most of the other methods, which are based on the assumption that the true covariates are fully obtained, results in this paper only require that the corrupted covariate matrix is observed. Then, by the application of information theory, the minimax rates of convergence for estimation are investigated in terms of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>ℓ</mo><mi>p</mi></msub><mspace width="4pt"></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-losses under the general sparsity assumption on the underlying regression parameter and some regularity conditions on the observed covariate matrix. The established lower and upper bounds on minimax risks agree up to constant factors when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, which together provide the information-theoretic limits of estimating a sparse vector in the high-dimensional linear errors-in-variables model. An estimator for the underlying parameter is also proposed and shown to be minimax optimal in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℓ</mo><mn>2</mn></msub></semantics></math></inline-formula>-loss.https://www.mdpi.com/1099-4300/23/6/722sparse linear regressionerrors-in-variables modelminimax rateKullback–Leibler divergenceinformation-theoretic limitations
collection DOAJ
language English
format Article
sources DOAJ
author Xin Li
Dongya Wu
spellingShingle Xin Li
Dongya Wu
Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls
Entropy
sparse linear regression
errors-in-variables model
minimax rate
Kullback–Leibler divergence
information-theoretic limitations
author_facet Xin Li
Dongya Wu
author_sort Xin Li
title Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls
title_short Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls
title_full Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls
title_fullStr Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls
title_full_unstemmed Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls
title_sort minimax rates of <i>ℓ</i><sub><i>p</i></sub>-losses for high-dimensional linear errors-in-variables models over <i>ℓ</i><sub><i>q</i></sub>-balls
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2021-06-01
description In this paper, the high-dimensional linear regression model is considered, where the covariates are measured with additive noise. Different from most of the other methods, which are based on the assumption that the true covariates are fully obtained, results in this paper only require that the corrupted covariate matrix is observed. Then, by the application of information theory, the minimax rates of convergence for estimation are investigated in terms of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>ℓ</mo><mi>p</mi></msub><mspace width="4pt"></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-losses under the general sparsity assumption on the underlying regression parameter and some regularity conditions on the observed covariate matrix. The established lower and upper bounds on minimax risks agree up to constant factors when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, which together provide the information-theoretic limits of estimating a sparse vector in the high-dimensional linear errors-in-variables model. An estimator for the underlying parameter is also proposed and shown to be minimax optimal in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℓ</mo><mn>2</mn></msub></semantics></math></inline-formula>-loss.
topic sparse linear regression
errors-in-variables model
minimax rate
Kullback–Leibler divergence
information-theoretic limitations
url https://www.mdpi.com/1099-4300/23/6/722
work_keys_str_mv AT xinli minimaxratesofilisubipisublossesforhighdimensionallinearerrorsinvariablesmodelsoverilisubiqisubballs
AT dongyawu minimaxratesofilisubipisublossesforhighdimensionallinearerrorsinvariablesmodelsoverilisubiqisubballs
_version_ 1721351357289463808