Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls
In this paper, the high-dimensional linear regression model is considered, where the covariates are measured with additive noise. Different from most of the other methods, which are based on the assumption that the true covariates are fully obtained, results in this paper only require that the corru...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/6/722 |
id |
doaj-931b015e35444cfe8ae67452aab9c0bc |
---|---|
record_format |
Article |
spelling |
doaj-931b015e35444cfe8ae67452aab9c0bc2021-06-30T23:25:18ZengMDPI AGEntropy1099-43002021-06-012372272210.3390/e23060722Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-BallsXin Li0Dongya Wu1School of Mathematics, Northwest University, Xi’an 710069, ChinaSchool of Information Science and Technology, Northwest University, Xi’an 710069, ChinaIn this paper, the high-dimensional linear regression model is considered, where the covariates are measured with additive noise. Different from most of the other methods, which are based on the assumption that the true covariates are fully obtained, results in this paper only require that the corrupted covariate matrix is observed. Then, by the application of information theory, the minimax rates of convergence for estimation are investigated in terms of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>ℓ</mo><mi>p</mi></msub><mspace width="4pt"></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-losses under the general sparsity assumption on the underlying regression parameter and some regularity conditions on the observed covariate matrix. The established lower and upper bounds on minimax risks agree up to constant factors when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, which together provide the information-theoretic limits of estimating a sparse vector in the high-dimensional linear errors-in-variables model. An estimator for the underlying parameter is also proposed and shown to be minimax optimal in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℓ</mo><mn>2</mn></msub></semantics></math></inline-formula>-loss.https://www.mdpi.com/1099-4300/23/6/722sparse linear regressionerrors-in-variables modelminimax rateKullback–Leibler divergenceinformation-theoretic limitations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xin Li Dongya Wu |
spellingShingle |
Xin Li Dongya Wu Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls Entropy sparse linear regression errors-in-variables model minimax rate Kullback–Leibler divergence information-theoretic limitations |
author_facet |
Xin Li Dongya Wu |
author_sort |
Xin Li |
title |
Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls |
title_short |
Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls |
title_full |
Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls |
title_fullStr |
Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls |
title_full_unstemmed |
Minimax Rates of <i>ℓ</i><sub><i>p</i></sub>-Losses for High-Dimensional Linear Errors-in-Variables Models over <i>ℓ</i><sub><i>q</i></sub>-Balls |
title_sort |
minimax rates of <i>ℓ</i><sub><i>p</i></sub>-losses for high-dimensional linear errors-in-variables models over <i>ℓ</i><sub><i>q</i></sub>-balls |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-06-01 |
description |
In this paper, the high-dimensional linear regression model is considered, where the covariates are measured with additive noise. Different from most of the other methods, which are based on the assumption that the true covariates are fully obtained, results in this paper only require that the corrupted covariate matrix is observed. Then, by the application of information theory, the minimax rates of convergence for estimation are investigated in terms of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>ℓ</mo><mi>p</mi></msub><mspace width="4pt"></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-losses under the general sparsity assumption on the underlying regression parameter and some regularity conditions on the observed covariate matrix. The established lower and upper bounds on minimax risks agree up to constant factors when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, which together provide the information-theoretic limits of estimating a sparse vector in the high-dimensional linear errors-in-variables model. An estimator for the underlying parameter is also proposed and shown to be minimax optimal in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℓ</mo><mn>2</mn></msub></semantics></math></inline-formula>-loss. |
topic |
sparse linear regression errors-in-variables model minimax rate Kullback–Leibler divergence information-theoretic limitations |
url |
https://www.mdpi.com/1099-4300/23/6/722 |
work_keys_str_mv |
AT xinli minimaxratesofilisubipisublossesforhighdimensionallinearerrorsinvariablesmodelsoverilisubiqisubballs AT dongyawu minimaxratesofilisubipisublossesforhighdimensionallinearerrorsinvariablesmodelsoverilisubiqisubballs |
_version_ |
1721351357289463808 |