Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation

This paper describes CHEM2D-H2O, a new parameterization of H<sub>2</sub>O photochemical production and loss based on the CHEM2D photochemical-transport model of the middle atmosphere. This parameterization accounts for the altitude, latitude, and seasonal variations in th...

Full description

Bibliographic Details
Main Authors: J. P. McCormack, K. W. Hoppel, D. E. Siskind
Format: Article
Language:English
Published: Copernicus Publications 2008-12-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/8/7519/2008/acp-8-7519-2008.pdf
id doaj-9318c291b3fa4c70b236407f4c197999
record_format Article
spelling doaj-9318c291b3fa4c70b236407f4c1979992020-11-25T00:13:28ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242008-12-0182475197532Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilationJ. P. McCormackK. W. HoppelD. E. SiskindThis paper describes CHEM2D-H2O, a new parameterization of H<sub>2</sub>O photochemical production and loss based on the CHEM2D photochemical-transport model of the middle atmosphere. This parameterization accounts for the altitude, latitude, and seasonal variations in the photochemical sources and sinks of water vapor over the pressure region from 100–0.001 hPa (~16–90 km altitude). A series of free-running NOGAPS-ALPHA forecast model simulations offers a preliminary assessment of CHEM2D-H2O performance over the June 2007 period. Results indicate that the CHEM2D-H2O parameterization improves global 10-day forecasts of upper mesospheric water vapor compared to forecasts using an existing one-dimensional (altitude only) parameterization. Most of the improvement is seen at high winter latitudes where the one-dimensional parameterization specifies photolytic H<sub>2</sub>O loss year round despite the lack of sunlight in winter. The new CHEM2D-H2O parameterization should provide a better representation of the downwelling of dry mesospheric air into the stratospheric polar vortex in operational analyses that do not assimilate middle atmospheric H<sub>2</sub>O measurements. http://www.atmos-chem-phys.net/8/7519/2008/acp-8-7519-2008.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. P. McCormack
K. W. Hoppel
D. E. Siskind
spellingShingle J. P. McCormack
K. W. Hoppel
D. E. Siskind
Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation
Atmospheric Chemistry and Physics
author_facet J. P. McCormack
K. W. Hoppel
D. E. Siskind
author_sort J. P. McCormack
title Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation
title_short Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation
title_full Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation
title_fullStr Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation
title_full_unstemmed Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation
title_sort parameterization of middle atmospheric water vapor photochemistry for high-altitude nwp and data assimilation
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2008-12-01
description This paper describes CHEM2D-H2O, a new parameterization of H<sub>2</sub>O photochemical production and loss based on the CHEM2D photochemical-transport model of the middle atmosphere. This parameterization accounts for the altitude, latitude, and seasonal variations in the photochemical sources and sinks of water vapor over the pressure region from 100–0.001 hPa (~16–90 km altitude). A series of free-running NOGAPS-ALPHA forecast model simulations offers a preliminary assessment of CHEM2D-H2O performance over the June 2007 period. Results indicate that the CHEM2D-H2O parameterization improves global 10-day forecasts of upper mesospheric water vapor compared to forecasts using an existing one-dimensional (altitude only) parameterization. Most of the improvement is seen at high winter latitudes where the one-dimensional parameterization specifies photolytic H<sub>2</sub>O loss year round despite the lack of sunlight in winter. The new CHEM2D-H2O parameterization should provide a better representation of the downwelling of dry mesospheric air into the stratospheric polar vortex in operational analyses that do not assimilate middle atmospheric H<sub>2</sub>O measurements.
url http://www.atmos-chem-phys.net/8/7519/2008/acp-8-7519-2008.pdf
work_keys_str_mv AT jpmccormack parameterizationofmiddleatmosphericwatervaporphotochemistryforhighaltitudenwpanddataassimilation
AT kwhoppel parameterizationofmiddleatmosphericwatervaporphotochemistryforhighaltitudenwpanddataassimilation
AT desiskind parameterizationofmiddleatmosphericwatervaporphotochemistryforhighaltitudenwpanddataassimilation
_version_ 1725394025690693632