The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth

For the preemptive scheduling problem in case of subsequent job importance growth, it is studied whether the optimal schedule might be found faster within an exact model. It is ascertained that when the number of jobs up to six (except for the case of four jobs) and there is no randomness in problem...

Full description

Bibliographic Details
Main Author: Vadim Romanuke
Format: Article
Language:English
Published: V. N. Karazin Kharkiv National University 2018-11-01
Series:Вісник Харківського національного університету імені В.Н. Каразіна. Серія: Математичне моделювання, інформаційні технології, автоматизовані системи управління
id doaj-92ff4604ce394864884449a954ead46d
record_format Article
spelling doaj-92ff4604ce394864884449a954ead46d2020-11-25T03:06:02ZengV. N. Karazin Kharkiv National UniversityВісник Харківського національного університету імені В.Н. Каразіна. Серія: Математичне моделювання, інформаційні технології, автоматизовані системи управління2304-62012524-26012018-11-014010.26565/2304-6201-2018-40-07The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growthVadim RomanukeFor the preemptive scheduling problem in case of subsequent job importance growth, it is studied whether the optimal schedule might be found faster within an exact model. It is ascertained that when the number of jobs up to six (except for the case of four jobs) and there is no randomness in problem forming, a little advantage of weight-descending job order exists only on average. As the number of jobs increases, the advantage of either weight-descending or weight-ascending job order becomes more certain. When priority weights are formed randomly, weight-descending job order is expected to be faster than weight-ascending.
collection DOAJ
language English
format Article
sources DOAJ
author Vadim Romanuke
spellingShingle Vadim Romanuke
The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth
Вісник Харківського національного університету імені В.Н. Каразіна. Серія: Математичне моделювання, інформаційні технології, автоматизовані системи управління
author_facet Vadim Romanuke
author_sort Vadim Romanuke
title The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth
title_short The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth
title_full The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth
title_fullStr The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth
title_full_unstemmed The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth
title_sort minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth
publisher V. N. Karazin Kharkiv National University
series Вісник Харківського національного університету імені В.Н. Каразіна. Серія: Математичне моделювання, інформаційні технології, автоматизовані системи управління
issn 2304-6201
2524-2601
publishDate 2018-11-01
description For the preemptive scheduling problem in case of subsequent job importance growth, it is studied whether the optimal schedule might be found faster within an exact model. It is ascertained that when the number of jobs up to six (except for the case of four jobs) and there is no randomness in problem forming, a little advantage of weight-descending job order exists only on average. As the number of jobs increases, the advantage of either weight-descending or weight-ascending job order becomes more certain. When priority weights are formed randomly, weight-descending job order is expected to be faster than weight-ascending.
work_keys_str_mv AT vadimromanuke theminimizationofexacttotalweightedcompletiontimeinthepreemptiveschedulingproblembysubsequentlengthequaljobimportancegrowth
AT vadimromanuke minimizationofexacttotalweightedcompletiontimeinthepreemptiveschedulingproblembysubsequentlengthequaljobimportancegrowth
_version_ 1724675833465929728