Summary: | Current computers are made of semiconductors. Semiconductor technology enables realization of microscopic quantum bits based on electron spins of individual electrons localized by gates in field effect transistors. This results in very fragile quantum processors prone to decoherence. Here, we discuss an alternative approach to constructing qubits using macroscopic and topologically protected states realized in semiconductor devices. First, we discuss a synthetic spin-1 chain realized in an array of quantum dots in a semiconductor nanowire or in a field effect transitor. A synthetic spin-1 chain is characterized by two effective edge quasiparticles with spin <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> protected from decoherence by topology and Haldane gap. The spin-<inline-formula><math display="inline"><semantics><mrow><mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> quasiparticles of Haldane phase form the basis of a macroscopic singlet-triplet qubit. We compare the spin one chain with a Kitaev chain. Its edge states are Majorana zero modes, possessing non-Abelian fractional statistics. They can be used to encode the quantum information using the braiding processes, i.e., encircling one particle by another, which do not depend on the details of the particle trajectory and thus are protected from decoherence.
|