In‐situ extraction and impregnation of black walnut husk into polyethylene film using supercritical carbon dioxide with an ethanol modifier

Abstract Walnuts are commonly cultivated for their kernel, which is a rich source of antioxidant phenolic compounds. The husk likewise contains antioxidant and antimicrobial compounds, but is typically discarded without further processing. Antioxidant compounds are useful in creating active packagin...

Full description

Bibliographic Details
Main Authors: Jonathan E. Wenzel, Veronica Moorman, Lihua Wang, Isaiah Spencer‐Williams, Mitchell Hall, Cheryl S. Samaniego, Michelle L. Ammerman
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Food Science & Nutrition
Subjects:
Online Access:https://doi.org/10.1002/fsn3.1348
Description
Summary:Abstract Walnuts are commonly cultivated for their kernel, which is a rich source of antioxidant phenolic compounds. The husk likewise contains antioxidant and antimicrobial compounds, but is typically discarded without further processing. Antioxidant compounds are useful in creating active packaging films, but typically decompose at melt extrusion temperatures in polymer processing. Due to carbon dioxide's low critical point and ability to swell polymer films, supercritical carbon dioxide may be used to impregnate phenolic compounds into polymers. For this study, a novel technique is used to simultaneously produce walnut husk extracts and impregnate the extract into polymer films in the same batch extractor using supercritical carbon dioxide with a 15 wt‐% ethanol modifier at 60°C at 19.4 MPa. The effect of varying the loading of walnut husk in the extractor upon impregnation mass was evaluated with the impregnation mass of the film increasing with walnut husk loading. It was determined by FTIR, as well as the reduction of the protein cytochrome c, that antioxidant compounds may be extracted from walnut husks and impregnated into low‐density polyethylene film (LDPE) by this technique.
ISSN:2048-7177