Aerosol pH and its driving factors in Beijing
<p>Aerosol acidity plays a key role in secondary aerosol formation. The high-temporal-resolution PM<span class="inline-formula"><sub>2.5</sub></span> pH and size-resolved aerosol pH in Beijing were calculated with ISORROPIA II. In 2016–2017, the mean PM<spa...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-06-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/7939/2019/acp-19-7939-2019.pdf |
id |
doaj-92c62e45384d452b94fce4df23b476cc |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Ding P. Zhao J. Su Q. Dong Q. Dong X. Du X. Du Y. Zhang |
spellingShingle |
J. Ding P. Zhao J. Su Q. Dong Q. Dong X. Du X. Du Y. Zhang Aerosol pH and its driving factors in Beijing Atmospheric Chemistry and Physics |
author_facet |
J. Ding P. Zhao J. Su Q. Dong Q. Dong X. Du X. Du Y. Zhang |
author_sort |
J. Ding |
title |
Aerosol pH and its driving factors in Beijing |
title_short |
Aerosol pH and its driving factors in Beijing |
title_full |
Aerosol pH and its driving factors in Beijing |
title_fullStr |
Aerosol pH and its driving factors in Beijing |
title_full_unstemmed |
Aerosol pH and its driving factors in Beijing |
title_sort |
aerosol ph and its driving factors in beijing |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2019-06-01 |
description |
<p>Aerosol acidity plays a key role in secondary aerosol formation. The
high-temporal-resolution PM<span class="inline-formula"><sub>2.5</sub></span> pH and size-resolved aerosol pH in
Beijing were calculated with ISORROPIA II. In 2016–2017, the mean PM<span class="inline-formula"><sub>2.5</sub></span>
pH (at relative humidity (RH) > 30 %) over four seasons was
<span class="inline-formula">4.5±0.7</span> (winter) > <span class="inline-formula">4.4±1.2</span> (spring) > <span class="inline-formula">4.3±0.8</span> (autumn) > <span class="inline-formula">3.8±1.2</span> (summer), showing
moderate acidity. In coarse-mode aerosols, <span class="inline-formula">Ca<sup>2+</sup></span> played an important
role in aerosol pH. Under heavily polluted conditions, more secondary ions
accumulated in the coarse mode, leading to the acidity of the coarse-mode
aerosols shifting from neutral to weakly acidic. Sensitivity tests also
demonstrated the significant contribution of crustal ions to PM<span class="inline-formula"><sub>2.5</sub></span> pH.
In the North China Plain (NCP), the common driving factors affecting
PM<span class="inline-formula"><sub>2.5</sub></span> pH variation in all four seasons were <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="8c898138530c760447165fe6cdc920bb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00001.svg" width="29pt" height="17pt" src="acp-19-7939-2019-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula">TNH<sub>3</sub></span>
(total ammonium (gas <span class="inline-formula">+</span> aerosol)), and temperature, while unique factors
were <span class="inline-formula">Ca<sup>2+</sup></span> in spring and RH in summer. The decreasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="14485914c781d9e26f0da54782d5723d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00002.svg" width="29pt" height="17pt" src="acp-19-7939-2019-ie00002.png"/></svg:svg></span></span>
and increasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ecc3e6dd5af0ffb1da8bfbfcb16b8e8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00003.svg" width="25pt" height="16pt" src="acp-19-7939-2019-ie00003.png"/></svg:svg></span></span> mass fractions in PM<span class="inline-formula"><sub>2.5</sub></span> as well as
excessive <span class="inline-formula">NH<sub>3</sub></span> in the atmosphere in the NCP in recent years are the
reasons why aerosol acidity in China is lower than that in Europe and the
United States. The nonlinear relationship between PM<span class="inline-formula"><sub>2.5</sub></span> pH and
<span class="inline-formula">TNH<sub>3</sub></span> indicated that although <span class="inline-formula">NH<sub>3</sub></span> in the NCP was abundant, the
PM<span class="inline-formula"><sub>2.5</sub></span> pH was still acidic because of the thermodynamic equilibrium
between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="44642da34e3da1fffc83c720c465c894"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00004.svg" width="24pt" height="15pt" src="acp-19-7939-2019-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">NH<sub>3</sub></span>. To reduce nitrate by controlling
ammonia, the amount of ammonia must be greatly reduced below excessive
quantities.</p> |
url |
https://www.atmos-chem-phys.net/19/7939/2019/acp-19-7939-2019.pdf |
work_keys_str_mv |
AT jding aerosolphanditsdrivingfactorsinbeijing AT pzhao aerosolphanditsdrivingfactorsinbeijing AT jsu aerosolphanditsdrivingfactorsinbeijing AT qdong aerosolphanditsdrivingfactorsinbeijing AT qdong aerosolphanditsdrivingfactorsinbeijing AT xdu aerosolphanditsdrivingfactorsinbeijing AT xdu aerosolphanditsdrivingfactorsinbeijing AT yzhang aerosolphanditsdrivingfactorsinbeijing |
_version_ |
1725828940744884224 |
spelling |
doaj-92c62e45384d452b94fce4df23b476cc2020-11-24T22:04:45ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-06-01197939795410.5194/acp-19-7939-2019Aerosol pH and its driving factors in BeijingJ. Ding0P. Zhao1J. Su2Q. Dong3Q. Dong4X. Du5X. Du6Y. Zhang7State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, ChinaInstitute of Urban Meteorology, China Meteorological Administration, Beijing 100089, ChinaInstitute of Urban Meteorology, China Meteorological Administration, Beijing 100089, ChinaInstitute of Urban Meteorology, China Meteorological Administration, Beijing 100089, ChinaBeilun Bureau of Meteorology, Ningbo 315800, ChinaInstitute of Urban Meteorology, China Meteorological Administration, Beijing 100089, ChinaState Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, ChinaState Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China<p>Aerosol acidity plays a key role in secondary aerosol formation. The high-temporal-resolution PM<span class="inline-formula"><sub>2.5</sub></span> pH and size-resolved aerosol pH in Beijing were calculated with ISORROPIA II. In 2016–2017, the mean PM<span class="inline-formula"><sub>2.5</sub></span> pH (at relative humidity (RH) > 30 %) over four seasons was <span class="inline-formula">4.5±0.7</span> (winter) > <span class="inline-formula">4.4±1.2</span> (spring) > <span class="inline-formula">4.3±0.8</span> (autumn) > <span class="inline-formula">3.8±1.2</span> (summer), showing moderate acidity. In coarse-mode aerosols, <span class="inline-formula">Ca<sup>2+</sup></span> played an important role in aerosol pH. Under heavily polluted conditions, more secondary ions accumulated in the coarse mode, leading to the acidity of the coarse-mode aerosols shifting from neutral to weakly acidic. Sensitivity tests also demonstrated the significant contribution of crustal ions to PM<span class="inline-formula"><sub>2.5</sub></span> pH. In the North China Plain (NCP), the common driving factors affecting PM<span class="inline-formula"><sub>2.5</sub></span> pH variation in all four seasons were <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="8c898138530c760447165fe6cdc920bb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00001.svg" width="29pt" height="17pt" src="acp-19-7939-2019-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula">TNH<sub>3</sub></span> (total ammonium (gas <span class="inline-formula">+</span> aerosol)), and temperature, while unique factors were <span class="inline-formula">Ca<sup>2+</sup></span> in spring and RH in summer. The decreasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="14485914c781d9e26f0da54782d5723d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00002.svg" width="29pt" height="17pt" src="acp-19-7939-2019-ie00002.png"/></svg:svg></span></span> and increasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ecc3e6dd5af0ffb1da8bfbfcb16b8e8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00003.svg" width="25pt" height="16pt" src="acp-19-7939-2019-ie00003.png"/></svg:svg></span></span> mass fractions in PM<span class="inline-formula"><sub>2.5</sub></span> as well as excessive <span class="inline-formula">NH<sub>3</sub></span> in the atmosphere in the NCP in recent years are the reasons why aerosol acidity in China is lower than that in Europe and the United States. The nonlinear relationship between PM<span class="inline-formula"><sub>2.5</sub></span> pH and <span class="inline-formula">TNH<sub>3</sub></span> indicated that although <span class="inline-formula">NH<sub>3</sub></span> in the NCP was abundant, the PM<span class="inline-formula"><sub>2.5</sub></span> pH was still acidic because of the thermodynamic equilibrium between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="44642da34e3da1fffc83c720c465c894"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00004.svg" width="24pt" height="15pt" src="acp-19-7939-2019-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">NH<sub>3</sub></span>. To reduce nitrate by controlling ammonia, the amount of ammonia must be greatly reduced below excessive quantities.</p>https://www.atmos-chem-phys.net/19/7939/2019/acp-19-7939-2019.pdf |