Aerosol pH and its driving factors in Beijing

<p>Aerosol acidity plays a key role in secondary aerosol formation. The high-temporal-resolution PM<span class="inline-formula"><sub>2.5</sub></span> pH and size-resolved aerosol pH in Beijing were calculated with ISORROPIA II. In 2016–2017, the mean PM<spa...

Full description

Bibliographic Details
Main Authors: J. Ding, P. Zhao, J. Su, Q. Dong, X. Du, Y. Zhang
Format: Article
Language:English
Published: Copernicus Publications 2019-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/7939/2019/acp-19-7939-2019.pdf
id doaj-92c62e45384d452b94fce4df23b476cc
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author J. Ding
P. Zhao
J. Su
Q. Dong
Q. Dong
X. Du
X. Du
Y. Zhang
spellingShingle J. Ding
P. Zhao
J. Su
Q. Dong
Q. Dong
X. Du
X. Du
Y. Zhang
Aerosol pH and its driving factors in Beijing
Atmospheric Chemistry and Physics
author_facet J. Ding
P. Zhao
J. Su
Q. Dong
Q. Dong
X. Du
X. Du
Y. Zhang
author_sort J. Ding
title Aerosol pH and its driving factors in Beijing
title_short Aerosol pH and its driving factors in Beijing
title_full Aerosol pH and its driving factors in Beijing
title_fullStr Aerosol pH and its driving factors in Beijing
title_full_unstemmed Aerosol pH and its driving factors in Beijing
title_sort aerosol ph and its driving factors in beijing
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-06-01
description <p>Aerosol acidity plays a key role in secondary aerosol formation. The high-temporal-resolution PM<span class="inline-formula"><sub>2.5</sub></span> pH and size-resolved aerosol pH in Beijing were calculated with ISORROPIA II. In 2016–2017, the mean PM<span class="inline-formula"><sub>2.5</sub></span> pH (at relative humidity (RH)&thinsp;&gt;&thinsp;30&thinsp;%) over four seasons was <span class="inline-formula">4.5±0.7</span> (winter)&thinsp;&gt;&thinsp;<span class="inline-formula">4.4±1.2</span> (spring)&thinsp;&gt;&thinsp;<span class="inline-formula">4.3±0.8</span> (autumn)&thinsp;&gt;&thinsp;<span class="inline-formula">3.8±1.2</span> (summer), showing moderate acidity. In coarse-mode aerosols, <span class="inline-formula">Ca<sup>2+</sup></span> played an important role in aerosol pH. Under heavily polluted conditions, more secondary ions accumulated in the coarse mode, leading to the acidity of the coarse-mode aerosols shifting from neutral to weakly acidic. Sensitivity tests also demonstrated the significant contribution of crustal ions to PM<span class="inline-formula"><sub>2.5</sub></span> pH. In the North China Plain (NCP), the common driving factors affecting PM<span class="inline-formula"><sub>2.5</sub></span> pH variation in all four seasons were <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="8c898138530c760447165fe6cdc920bb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00001.svg" width="29pt" height="17pt" src="acp-19-7939-2019-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula">TNH<sub>3</sub></span> (total ammonium (gas&thinsp;<span class="inline-formula">+</span>&thinsp;aerosol)), and temperature, while unique factors were <span class="inline-formula">Ca<sup>2+</sup></span> in spring and RH in summer. The decreasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="14485914c781d9e26f0da54782d5723d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00002.svg" width="29pt" height="17pt" src="acp-19-7939-2019-ie00002.png"/></svg:svg></span></span> and increasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ecc3e6dd5af0ffb1da8bfbfcb16b8e8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00003.svg" width="25pt" height="16pt" src="acp-19-7939-2019-ie00003.png"/></svg:svg></span></span> mass fractions in PM<span class="inline-formula"><sub>2.5</sub></span> as well as excessive <span class="inline-formula">NH<sub>3</sub></span> in the atmosphere in the NCP in recent years are the reasons why aerosol acidity in China is lower than that in Europe and the United States. The nonlinear relationship between PM<span class="inline-formula"><sub>2.5</sub></span> pH and <span class="inline-formula">TNH<sub>3</sub></span> indicated that although <span class="inline-formula">NH<sub>3</sub></span> in the NCP was abundant, the PM<span class="inline-formula"><sub>2.5</sub></span> pH was still acidic because of the thermodynamic equilibrium between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="44642da34e3da1fffc83c720c465c894"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00004.svg" width="24pt" height="15pt" src="acp-19-7939-2019-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">NH<sub>3</sub></span>. To reduce nitrate by controlling ammonia, the amount of ammonia must be greatly reduced below excessive quantities.</p>
url https://www.atmos-chem-phys.net/19/7939/2019/acp-19-7939-2019.pdf
work_keys_str_mv AT jding aerosolphanditsdrivingfactorsinbeijing
AT pzhao aerosolphanditsdrivingfactorsinbeijing
AT jsu aerosolphanditsdrivingfactorsinbeijing
AT qdong aerosolphanditsdrivingfactorsinbeijing
AT qdong aerosolphanditsdrivingfactorsinbeijing
AT xdu aerosolphanditsdrivingfactorsinbeijing
AT xdu aerosolphanditsdrivingfactorsinbeijing
AT yzhang aerosolphanditsdrivingfactorsinbeijing
_version_ 1725828940744884224
spelling doaj-92c62e45384d452b94fce4df23b476cc2020-11-24T22:04:45ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-06-01197939795410.5194/acp-19-7939-2019Aerosol pH and its driving factors in BeijingJ. Ding0P. Zhao1J. Su2Q. Dong3Q. Dong4X. Du5X. Du6Y. Zhang7State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, ChinaInstitute of Urban Meteorology, China Meteorological Administration, Beijing 100089, ChinaInstitute of Urban Meteorology, China Meteorological Administration, Beijing 100089, ChinaInstitute of Urban Meteorology, China Meteorological Administration, Beijing 100089, ChinaBeilun Bureau of Meteorology, Ningbo 315800, ChinaInstitute of Urban Meteorology, China Meteorological Administration, Beijing 100089, ChinaState Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, ChinaState Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China<p>Aerosol acidity plays a key role in secondary aerosol formation. The high-temporal-resolution PM<span class="inline-formula"><sub>2.5</sub></span> pH and size-resolved aerosol pH in Beijing were calculated with ISORROPIA II. In 2016–2017, the mean PM<span class="inline-formula"><sub>2.5</sub></span> pH (at relative humidity (RH)&thinsp;&gt;&thinsp;30&thinsp;%) over four seasons was <span class="inline-formula">4.5±0.7</span> (winter)&thinsp;&gt;&thinsp;<span class="inline-formula">4.4±1.2</span> (spring)&thinsp;&gt;&thinsp;<span class="inline-formula">4.3±0.8</span> (autumn)&thinsp;&gt;&thinsp;<span class="inline-formula">3.8±1.2</span> (summer), showing moderate acidity. In coarse-mode aerosols, <span class="inline-formula">Ca<sup>2+</sup></span> played an important role in aerosol pH. Under heavily polluted conditions, more secondary ions accumulated in the coarse mode, leading to the acidity of the coarse-mode aerosols shifting from neutral to weakly acidic. Sensitivity tests also demonstrated the significant contribution of crustal ions to PM<span class="inline-formula"><sub>2.5</sub></span> pH. In the North China Plain (NCP), the common driving factors affecting PM<span class="inline-formula"><sub>2.5</sub></span> pH variation in all four seasons were <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="8c898138530c760447165fe6cdc920bb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00001.svg" width="29pt" height="17pt" src="acp-19-7939-2019-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula">TNH<sub>3</sub></span> (total ammonium (gas&thinsp;<span class="inline-formula">+</span>&thinsp;aerosol)), and temperature, while unique factors were <span class="inline-formula">Ca<sup>2+</sup></span> in spring and RH in summer. The decreasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="14485914c781d9e26f0da54782d5723d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00002.svg" width="29pt" height="17pt" src="acp-19-7939-2019-ie00002.png"/></svg:svg></span></span> and increasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ecc3e6dd5af0ffb1da8bfbfcb16b8e8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00003.svg" width="25pt" height="16pt" src="acp-19-7939-2019-ie00003.png"/></svg:svg></span></span> mass fractions in PM<span class="inline-formula"><sub>2.5</sub></span> as well as excessive <span class="inline-formula">NH<sub>3</sub></span> in the atmosphere in the NCP in recent years are the reasons why aerosol acidity in China is lower than that in Europe and the United States. The nonlinear relationship between PM<span class="inline-formula"><sub>2.5</sub></span> pH and <span class="inline-formula">TNH<sub>3</sub></span> indicated that although <span class="inline-formula">NH<sub>3</sub></span> in the NCP was abundant, the PM<span class="inline-formula"><sub>2.5</sub></span> pH was still acidic because of the thermodynamic equilibrium between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="44642da34e3da1fffc83c720c465c894"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-7939-2019-ie00004.svg" width="24pt" height="15pt" src="acp-19-7939-2019-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">NH<sub>3</sub></span>. To reduce nitrate by controlling ammonia, the amount of ammonia must be greatly reduced below excessive quantities.</p>https://www.atmos-chem-phys.net/19/7939/2019/acp-19-7939-2019.pdf