Common fixed point theorems for compatible self-maps of Hausdorff topological spaces

<p/> <p>The concept of <it>proper orbits</it> of a map <inline-formula><graphic file="1687-1812-2005-645183-i1.gif"/></inline-formula> is introduced and results of the following type are obtained. If a continuous self-map <inline-formula><...

Full description

Bibliographic Details
Main Author: Jungck Gerald F
Format: Article
Language:English
Published: SpringerOpen 2005-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2005/645183
id doaj-92b21bccc75a43e2a005d500a19696c5
record_format Article
spelling doaj-92b21bccc75a43e2a005d500a19696c52020-11-25T01:30:57ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122005-01-0120053645183Common fixed point theorems for compatible self-maps of Hausdorff topological spacesJungck Gerald F<p/> <p>The concept of <it>proper orbits</it> of a map <inline-formula><graphic file="1687-1812-2005-645183-i1.gif"/></inline-formula> is introduced and results of the following type are obtained. If a continuous self-map <inline-formula><graphic file="1687-1812-2005-645183-i2.gif"/></inline-formula> of a Hausdorff topological space <inline-formula><graphic file="1687-1812-2005-645183-i3.gif"/></inline-formula> has relatively compact proper orbits, then <inline-formula><graphic file="1687-1812-2005-645183-i4.gif"/></inline-formula> has a fixed point. In fact, <inline-formula><graphic file="1687-1812-2005-645183-i5.gif"/></inline-formula> has a common fixed point with every continuous self-map <inline-formula><graphic file="1687-1812-2005-645183-i6.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2005-645183-i7.gif"/></inline-formula> which is nontrivially compatible with <inline-formula><graphic file="1687-1812-2005-645183-i8.gif"/></inline-formula>. A collection of metric and semimetric space fixed point theorems follows as a consequence. Specifically, a theorem by Kirk regarding diminishing orbital diameters is generalized, and a fixed point theorem for maps with no recurrent points is proved.</p>http://www.fixedpointtheoryandapplications.com/content/2005/645183
collection DOAJ
language English
format Article
sources DOAJ
author Jungck Gerald F
spellingShingle Jungck Gerald F
Common fixed point theorems for compatible self-maps of Hausdorff topological spaces
Fixed Point Theory and Applications
author_facet Jungck Gerald F
author_sort Jungck Gerald F
title Common fixed point theorems for compatible self-maps of Hausdorff topological spaces
title_short Common fixed point theorems for compatible self-maps of Hausdorff topological spaces
title_full Common fixed point theorems for compatible self-maps of Hausdorff topological spaces
title_fullStr Common fixed point theorems for compatible self-maps of Hausdorff topological spaces
title_full_unstemmed Common fixed point theorems for compatible self-maps of Hausdorff topological spaces
title_sort common fixed point theorems for compatible self-maps of hausdorff topological spaces
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2005-01-01
description <p/> <p>The concept of <it>proper orbits</it> of a map <inline-formula><graphic file="1687-1812-2005-645183-i1.gif"/></inline-formula> is introduced and results of the following type are obtained. If a continuous self-map <inline-formula><graphic file="1687-1812-2005-645183-i2.gif"/></inline-formula> of a Hausdorff topological space <inline-formula><graphic file="1687-1812-2005-645183-i3.gif"/></inline-formula> has relatively compact proper orbits, then <inline-formula><graphic file="1687-1812-2005-645183-i4.gif"/></inline-formula> has a fixed point. In fact, <inline-formula><graphic file="1687-1812-2005-645183-i5.gif"/></inline-formula> has a common fixed point with every continuous self-map <inline-formula><graphic file="1687-1812-2005-645183-i6.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2005-645183-i7.gif"/></inline-formula> which is nontrivially compatible with <inline-formula><graphic file="1687-1812-2005-645183-i8.gif"/></inline-formula>. A collection of metric and semimetric space fixed point theorems follows as a consequence. Specifically, a theorem by Kirk regarding diminishing orbital diameters is generalized, and a fixed point theorem for maps with no recurrent points is proved.</p>
url http://www.fixedpointtheoryandapplications.com/content/2005/645183
work_keys_str_mv AT jungckgeraldf commonfixedpointtheoremsforcompatibleselfmapsofhausdorfftopologicalspaces
_version_ 1715747902275452928