Common fixed point theorems for compatible self-maps of Hausdorff topological spaces
<p/> <p>The concept of <it>proper orbits</it> of a map <inline-formula><graphic file="1687-1812-2005-645183-i1.gif"/></inline-formula> is introduced and results of the following type are obtained. If a continuous self-map <inline-formula><...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2005-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2005/645183 |
id |
doaj-92b21bccc75a43e2a005d500a19696c5 |
---|---|
record_format |
Article |
spelling |
doaj-92b21bccc75a43e2a005d500a19696c52020-11-25T01:30:57ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122005-01-0120053645183Common fixed point theorems for compatible self-maps of Hausdorff topological spacesJungck Gerald F<p/> <p>The concept of <it>proper orbits</it> of a map <inline-formula><graphic file="1687-1812-2005-645183-i1.gif"/></inline-formula> is introduced and results of the following type are obtained. If a continuous self-map <inline-formula><graphic file="1687-1812-2005-645183-i2.gif"/></inline-formula> of a Hausdorff topological space <inline-formula><graphic file="1687-1812-2005-645183-i3.gif"/></inline-formula> has relatively compact proper orbits, then <inline-formula><graphic file="1687-1812-2005-645183-i4.gif"/></inline-formula> has a fixed point. In fact, <inline-formula><graphic file="1687-1812-2005-645183-i5.gif"/></inline-formula> has a common fixed point with every continuous self-map <inline-formula><graphic file="1687-1812-2005-645183-i6.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2005-645183-i7.gif"/></inline-formula> which is nontrivially compatible with <inline-formula><graphic file="1687-1812-2005-645183-i8.gif"/></inline-formula>. A collection of metric and semimetric space fixed point theorems follows as a consequence. Specifically, a theorem by Kirk regarding diminishing orbital diameters is generalized, and a fixed point theorem for maps with no recurrent points is proved.</p>http://www.fixedpointtheoryandapplications.com/content/2005/645183 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jungck Gerald F |
spellingShingle |
Jungck Gerald F Common fixed point theorems for compatible self-maps of Hausdorff topological spaces Fixed Point Theory and Applications |
author_facet |
Jungck Gerald F |
author_sort |
Jungck Gerald F |
title |
Common fixed point theorems for compatible self-maps of Hausdorff topological spaces |
title_short |
Common fixed point theorems for compatible self-maps of Hausdorff topological spaces |
title_full |
Common fixed point theorems for compatible self-maps of Hausdorff topological spaces |
title_fullStr |
Common fixed point theorems for compatible self-maps of Hausdorff topological spaces |
title_full_unstemmed |
Common fixed point theorems for compatible self-maps of Hausdorff topological spaces |
title_sort |
common fixed point theorems for compatible self-maps of hausdorff topological spaces |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2005-01-01 |
description |
<p/> <p>The concept of <it>proper orbits</it> of a map <inline-formula><graphic file="1687-1812-2005-645183-i1.gif"/></inline-formula> is introduced and results of the following type are obtained. If a continuous self-map <inline-formula><graphic file="1687-1812-2005-645183-i2.gif"/></inline-formula> of a Hausdorff topological space <inline-formula><graphic file="1687-1812-2005-645183-i3.gif"/></inline-formula> has relatively compact proper orbits, then <inline-formula><graphic file="1687-1812-2005-645183-i4.gif"/></inline-formula> has a fixed point. In fact, <inline-formula><graphic file="1687-1812-2005-645183-i5.gif"/></inline-formula> has a common fixed point with every continuous self-map <inline-formula><graphic file="1687-1812-2005-645183-i6.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2005-645183-i7.gif"/></inline-formula> which is nontrivially compatible with <inline-formula><graphic file="1687-1812-2005-645183-i8.gif"/></inline-formula>. A collection of metric and semimetric space fixed point theorems follows as a consequence. Specifically, a theorem by Kirk regarding diminishing orbital diameters is generalized, and a fixed point theorem for maps with no recurrent points is proved.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2005/645183 |
work_keys_str_mv |
AT jungckgeraldf commonfixedpointtheoremsforcompatibleselfmapsofhausdorfftopologicalspaces |
_version_ |
1715747902275452928 |