Matrine Enhances the Pathogenicity of Beauveria brongniartii Against Spodoptera litura (Lepidoptera: Noctuidae)

The repetitive application of pesticides at high doses against Spodoptera litura Fabricius has resulted in development of pesticide resistance and harmful effects to the natural environmental. Hence, finding alternate pest control strategies, such as entomopathogenic fungi or their application in co...

Full description

Bibliographic Details
Main Authors: Jianhui Wu, Xintong Yu, Xiaoshuang Wang, Liangde Tang, Shaukat Ali
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-08-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fmicb.2019.01812/full
Description
Summary:The repetitive application of pesticides at high doses against Spodoptera litura Fabricius has resulted in development of pesticide resistance and harmful effects to the natural environmental. Hence, finding alternate pest control strategies, such as entomopathogenic fungi or their application in combination with other natural chemicals, is of great importance to solve the abovementioned problems. This study presents the toxic effects of Beauveria brongniartii and matrine (individual or in combination with each other) against tobacco cutworm (S. litura). Different matrine treatments caused a dose dependent increase in S. litura mortality at different time intervals. The biological parameters of B. brongniartii (germination rate and average daily mycelia growth) were not inhibited by different matrine treatments. Different conidial concentrations of B. brongniartii caused significantly different mortalities of 2nd instar S. litura larvae at different time intervals. Different combined treatments of B. brongniartii and matrine showed a significant synergistic effect against S. litura under laboratory and semi-field conditions. The current findings showed a strong synergistic action for combined application of B. brongniartii and matrine against S. litura. Our results will provide baseline information on combined application of entomopathogenic fungi and natural chemicals in integrated pest management programs against S. litura.
ISSN:1664-302X