Simulation paradoxes related to a fractional Brownian motion with small Hurst index

We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}...

Full description

Bibliographic Details
Main Author: Vitalii Makogin
Format: Article
Language:English
Published: VTeX 2016-07-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA59
id doaj-928f9158faae4cd193e834e25fc34b3c
record_format Article
spelling doaj-928f9158faae4cd193e834e25fc34b3c2020-11-25T01:20:10ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542016-07-013218119010.15559/16-VMSTA59Simulation paradoxes related to a fractional Brownian motion with small Hurst indexVitalii Makogin0Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64, Volodymyrska St., 01601 Kyiv, UkraineWe consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}^{H}(i/N)$ grows rapidly to ∞ as the Hurst index tends to 0.https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA59fractional Brownian motionMonte Carlo simulationsexpected maximumdiscrete approximation
collection DOAJ
language English
format Article
sources DOAJ
author Vitalii Makogin
spellingShingle Vitalii Makogin
Simulation paradoxes related to a fractional Brownian motion with small Hurst index
Modern Stochastics: Theory and Applications
fractional Brownian motion
Monte Carlo simulations
expected maximum
discrete approximation
author_facet Vitalii Makogin
author_sort Vitalii Makogin
title Simulation paradoxes related to a fractional Brownian motion with small Hurst index
title_short Simulation paradoxes related to a fractional Brownian motion with small Hurst index
title_full Simulation paradoxes related to a fractional Brownian motion with small Hurst index
title_fullStr Simulation paradoxes related to a fractional Brownian motion with small Hurst index
title_full_unstemmed Simulation paradoxes related to a fractional Brownian motion with small Hurst index
title_sort simulation paradoxes related to a fractional brownian motion with small hurst index
publisher VTeX
series Modern Stochastics: Theory and Applications
issn 2351-6046
2351-6054
publishDate 2016-07-01
description We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}^{H}(i/N)$ grows rapidly to ∞ as the Hurst index tends to 0.
topic fractional Brownian motion
Monte Carlo simulations
expected maximum
discrete approximation
url https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA59
work_keys_str_mv AT vitaliimakogin simulationparadoxesrelatedtoafractionalbrownianmotionwithsmallhurstindex
_version_ 1725135128913510400