Simulation paradoxes related to a fractional Brownian motion with small Hurst index
We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
VTeX
2016-07-01
|
Series: | Modern Stochastics: Theory and Applications |
Subjects: | |
Online Access: | https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA59 |
id |
doaj-928f9158faae4cd193e834e25fc34b3c |
---|---|
record_format |
Article |
spelling |
doaj-928f9158faae4cd193e834e25fc34b3c2020-11-25T01:20:10ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542016-07-013218119010.15559/16-VMSTA59Simulation paradoxes related to a fractional Brownian motion with small Hurst indexVitalii Makogin0Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64, Volodymyrska St., 01601 Kyiv, UkraineWe consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}^{H}(i/N)$ grows rapidly to ∞ as the Hurst index tends to 0.https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA59fractional Brownian motionMonte Carlo simulationsexpected maximumdiscrete approximation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vitalii Makogin |
spellingShingle |
Vitalii Makogin Simulation paradoxes related to a fractional Brownian motion with small Hurst index Modern Stochastics: Theory and Applications fractional Brownian motion Monte Carlo simulations expected maximum discrete approximation |
author_facet |
Vitalii Makogin |
author_sort |
Vitalii Makogin |
title |
Simulation paradoxes related to a fractional Brownian motion with small Hurst index |
title_short |
Simulation paradoxes related to a fractional Brownian motion with small Hurst index |
title_full |
Simulation paradoxes related to a fractional Brownian motion with small Hurst index |
title_fullStr |
Simulation paradoxes related to a fractional Brownian motion with small Hurst index |
title_full_unstemmed |
Simulation paradoxes related to a fractional Brownian motion with small Hurst index |
title_sort |
simulation paradoxes related to a fractional brownian motion with small hurst index |
publisher |
VTeX |
series |
Modern Stochastics: Theory and Applications |
issn |
2351-6046 2351-6054 |
publishDate |
2016-07-01 |
description |
We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}^{H}(i/N)$ grows rapidly to ∞ as the Hurst index tends to 0. |
topic |
fractional Brownian motion Monte Carlo simulations expected maximum discrete approximation |
url |
https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA59 |
work_keys_str_mv |
AT vitaliimakogin simulationparadoxesrelatedtoafractionalbrownianmotionwithsmallhurstindex |
_version_ |
1725135128913510400 |