Summary: | In order to improve the video image processing technology, this paper presents a moving object detection and tracking algorithm based on computer vision technology. Firstly, the detection performance of the interframe difference method and the background difference model method is compared comprehensively from both theoretical and experimental aspects, and then the Robert edge detection operator is selected to carry out edge detection of the vehicle. The research results show that the algorithm proposed in this paper has the longest running time per frame when tracking a moving target, which is about 2.3 times that of the single frame running time of the CamShift algorithm. The algorithm has high running efficiency and can meet the requirements of real-time tracking of a foreground target. The algorithm has the highest tracking accuracy, the time consumption is reduced, and the error of the tracking frame deviating from the real position of the target is the least.
|