A Model-Based Virtual Sensor for Condition Monitoring of Li-Ion Batteries in Cyber-Physical Vehicle Systems
A model-based virtual sensor for assessing the health of rechargeable batteries for cyber-physical vehicle systems (CPVSs) is presented that can exploit coarse data streamed from on-vehicle sensors of current, voltage, and temperature. First-principle-based models are combined with knowledge acquire...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Journal of Sensors |
Online Access: | http://dx.doi.org/10.1155/2017/9643279 |
Summary: | A model-based virtual sensor for assessing the health of rechargeable batteries for cyber-physical vehicle systems (CPVSs) is presented that can exploit coarse data streamed from on-vehicle sensors of current, voltage, and temperature. First-principle-based models are combined with knowledge acquired from data in a semiphysical arrangement. The dynamic behaviour of the battery is embodied in the parametric definition of a set of differential equations, and fuzzy knowledge bases are embedded as nonlinear blocks in these equations, providing a human understandable reading of the State of Health of the CPVS that can be easily integrated in the fleet through-life management. |
---|---|
ISSN: | 1687-725X 1687-7268 |