H-M Bearing Capacity of Cone-Shaped Foundation for Onshore Wind Turbine under Monotonic Horizontal Loading

In this paper, monotonic horizontal loading tests were carried out to study the bearing capacity of the cone-shaped foundation in marine fine sand. With load-controlled methods, the horizontal load was applied to the rod of cone-shaped foundation at loading eccentricity ratios of 5.0, 6.0, and 7.0....

Full description

Bibliographic Details
Main Authors: GuoQi Xing, ChangJiang Liu, ShanShan Li, Wei Xuan
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2019/3409561
Description
Summary:In this paper, monotonic horizontal loading tests were carried out to study the bearing capacity of the cone-shaped foundation in marine fine sand. With load-controlled methods, the horizontal load was applied to the rod of cone-shaped foundation at loading eccentricity ratios of 5.0, 6.0, and 7.0. In addition, theoretical analysis was used to investigate the horizontal ultimate bearing capacity, and finite element analysis was also used in this paper to investigate the influence factors of the bearing capacity of cone-shaped foundation. Based on the theoretical analysis, the formula for horizontal ultimate bearing capacity was deduced. Test results show that, at the same loading eccentricity, cone-shaped foundation can provide higher H-M bearing capacity as well as lower lateral deflection compared to regular circular foundation for wind turbines. In addition, the deflection-hardening behavior of load-deflection curve for cone-shaped foundation is also observed. Numerical analysis results show that the H-M bearing capacity of the cone-shaped foundation increases with increasing aspect ratio and buried depth, however, and decreases with increasing loading eccentricity. Based on the results from finite element analyses, several equations to calculate the maximum moment bearing capacities are put forward, which take the aspect ratio, loading eccentricity, and embedded depth into account.
ISSN:1687-8434
1687-8442