Renormalization, Isogenies, and Rational Symmetries of Differential Equations
We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2010-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2010/941560 |
id |
doaj-92511522b68143ab920b85561879ebb6 |
---|---|
record_format |
Article |
spelling |
doaj-92511522b68143ab920b85561879ebb62021-07-02T03:02:24ZengHindawi LimitedAdvances in Mathematical Physics1687-91201687-91392010-01-01201010.1155/2010/941560941560Renormalization, Isogenies, and Rational Symmetries of Differential EquationsA. Bostan0S. Boukraa1S. Hassani2J.-M. Maillard3J.-A. Weil4N. Zenine5N. Abarenkova6INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, FranceLPTHIRM and Département d'Aéronautique, Université de Blida, 09470 Blida, AlgeriaCentre de Recherche Nucléaire d’Alger, 2 Boulevard. Frantz Fanon, BP 399, 16000 Alger, AlgeriaLPTMC, UMR 7600 CNRS, Université de Paris, Tour 24, 4ème étage, case 121, 4 Place Jussieu, 75252 Paris Cedex 05, FranceXLIM, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, FranceCentre de Recherche Nucléaire d’Alger, 2 Boulevard. Frantz Fanon, BP 399, 16000 Alger, AlgeriaSt Petersburg Department of Steklov Institute of Mathematics, 27 Fontanka, 191023 St. Petersburg, RussiaWe give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.http://dx.doi.org/10.1155/2010/941560 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Bostan S. Boukraa S. Hassani J.-M. Maillard J.-A. Weil N. Zenine N. Abarenkova |
spellingShingle |
A. Bostan S. Boukraa S. Hassani J.-M. Maillard J.-A. Weil N. Zenine N. Abarenkova Renormalization, Isogenies, and Rational Symmetries of Differential Equations Advances in Mathematical Physics |
author_facet |
A. Bostan S. Boukraa S. Hassani J.-M. Maillard J.-A. Weil N. Zenine N. Abarenkova |
author_sort |
A. Bostan |
title |
Renormalization, Isogenies, and Rational Symmetries
of Differential Equations |
title_short |
Renormalization, Isogenies, and Rational Symmetries
of Differential Equations |
title_full |
Renormalization, Isogenies, and Rational Symmetries
of Differential Equations |
title_fullStr |
Renormalization, Isogenies, and Rational Symmetries
of Differential Equations |
title_full_unstemmed |
Renormalization, Isogenies, and Rational Symmetries
of Differential Equations |
title_sort |
renormalization, isogenies, and rational symmetries
of differential equations |
publisher |
Hindawi Limited |
series |
Advances in Mathematical Physics |
issn |
1687-9120 1687-9139 |
publishDate |
2010-01-01 |
description |
We give an example of infinite-order rational transformation that
leaves a linear differential equation covariant. This example can be seen as a nontrivial
but still simple illustration of an exact representation of the renormalization
group. |
url |
http://dx.doi.org/10.1155/2010/941560 |
work_keys_str_mv |
AT abostan renormalizationisogeniesandrationalsymmetriesofdifferentialequations AT sboukraa renormalizationisogeniesandrationalsymmetriesofdifferentialequations AT shassani renormalizationisogeniesandrationalsymmetriesofdifferentialequations AT jmmaillard renormalizationisogeniesandrationalsymmetriesofdifferentialequations AT jaweil renormalizationisogeniesandrationalsymmetriesofdifferentialequations AT nzenine renormalizationisogeniesandrationalsymmetriesofdifferentialequations AT nabarenkova renormalizationisogeniesandrationalsymmetriesofdifferentialequations |
_version_ |
1721342320028155904 |