Renormalization, Isogenies, and Rational Symmetries of Differential Equations

We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.

Bibliographic Details
Main Authors: A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine, N. Abarenkova
Format: Article
Language:English
Published: Hindawi Limited 2010-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2010/941560
id doaj-92511522b68143ab920b85561879ebb6
record_format Article
spelling doaj-92511522b68143ab920b85561879ebb62021-07-02T03:02:24ZengHindawi LimitedAdvances in Mathematical Physics1687-91201687-91392010-01-01201010.1155/2010/941560941560Renormalization, Isogenies, and Rational Symmetries of Differential EquationsA. Bostan0S. Boukraa1S. Hassani2J.-M. Maillard3J.-A. Weil4N. Zenine5N. Abarenkova6INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, FranceLPTHIRM and Département d'Aéronautique, Université de Blida, 09470 Blida, AlgeriaCentre de Recherche Nucléaire d’Alger, 2 Boulevard. Frantz Fanon, BP 399, 16000 Alger, AlgeriaLPTMC, UMR 7600 CNRS, Université de Paris, Tour 24, 4ème étage, case 121, 4 Place Jussieu, 75252 Paris Cedex 05, FranceXLIM, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, FranceCentre de Recherche Nucléaire d’Alger, 2 Boulevard. Frantz Fanon, BP 399, 16000 Alger, AlgeriaSt Petersburg Department of Steklov Institute of Mathematics, 27 Fontanka, 191023 St. Petersburg, RussiaWe give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.http://dx.doi.org/10.1155/2010/941560
collection DOAJ
language English
format Article
sources DOAJ
author A. Bostan
S. Boukraa
S. Hassani
J.-M. Maillard
J.-A. Weil
N. Zenine
N. Abarenkova
spellingShingle A. Bostan
S. Boukraa
S. Hassani
J.-M. Maillard
J.-A. Weil
N. Zenine
N. Abarenkova
Renormalization, Isogenies, and Rational Symmetries of Differential Equations
Advances in Mathematical Physics
author_facet A. Bostan
S. Boukraa
S. Hassani
J.-M. Maillard
J.-A. Weil
N. Zenine
N. Abarenkova
author_sort A. Bostan
title Renormalization, Isogenies, and Rational Symmetries of Differential Equations
title_short Renormalization, Isogenies, and Rational Symmetries of Differential Equations
title_full Renormalization, Isogenies, and Rational Symmetries of Differential Equations
title_fullStr Renormalization, Isogenies, and Rational Symmetries of Differential Equations
title_full_unstemmed Renormalization, Isogenies, and Rational Symmetries of Differential Equations
title_sort renormalization, isogenies, and rational symmetries of differential equations
publisher Hindawi Limited
series Advances in Mathematical Physics
issn 1687-9120
1687-9139
publishDate 2010-01-01
description We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.
url http://dx.doi.org/10.1155/2010/941560
work_keys_str_mv AT abostan renormalizationisogeniesandrationalsymmetriesofdifferentialequations
AT sboukraa renormalizationisogeniesandrationalsymmetriesofdifferentialequations
AT shassani renormalizationisogeniesandrationalsymmetriesofdifferentialequations
AT jmmaillard renormalizationisogeniesandrationalsymmetriesofdifferentialequations
AT jaweil renormalizationisogeniesandrationalsymmetriesofdifferentialequations
AT nzenine renormalizationisogeniesandrationalsymmetriesofdifferentialequations
AT nabarenkova renormalizationisogeniesandrationalsymmetriesofdifferentialequations
_version_ 1721342320028155904