Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag

In recent years, environmental protection has gained a major concern. In line with the rapid growth of various industries, high amount of effluent has been generated and discharged to the environment. One of the concerns is the presence of synthetic dye in the wastewater stream, as it may endanger h...

Full description

Bibliographic Details
Main Authors: Suhanna Natalya Mohd Suhaimy, Luqman Chuah Abdullah
Format: Article
Language:English
Published: Universitas Gadjah Mada 2019-12-01
Series:Indonesian Journal of Chemistry
Subjects:
Online Access:https://jurnal.ugm.ac.id/ijc/article/view/40910
id doaj-924677429d444a7d837736d721852352
record_format Article
spelling doaj-924677429d444a7d837736d7218523522020-11-25T02:05:43ZengUniversitas Gadjah MadaIndonesian Journal of Chemistry1411-94202460-15782019-12-0120111311910.22146/ijc.4091023970Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) SlagSuhanna Natalya Mohd Suhaimy0Luqman Chuah Abdullah1Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, MalaysiaDepartment of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, MalaysiaIn recent years, environmental protection has gained a major concern. In line with the rapid growth of various industries, high amount of effluent has been generated and discharged to the environment. One of the concerns is the presence of synthetic dye in the wastewater stream, as it may endanger human and aquatic life. In this experiment, the Electrical Arc Furnace (EAF) slag has been used as an adsorbent to remove methylene blue from the aqueous solution. Batch experiments have been conducted, and the effects of initial dye concentration, pH, adsorbent dosage and temperature were studied respectively. Chemical treatment has been performed to modify the adsorbent. The results reveal that treated EAF Slag has higher efficiency in removing methylene blue compared to raw EAF slag. More pores have been exposed, and impurities on the adsorbent’s surface have been removed, to enhance better removal efficiency. The maximum adsorption capacity for treated EAF is 14.2029 mg/g and for raw EAF Slag is 9.615 mg/g. The maximum removal percentage for treated EAF Slag is 71.01%, whereas raw EAF shows 37.19% removal at pH 10. Both raw EAF Slag and treated EAF slag fits the data for the Langmuir isotherm model which obeys the monolayer adsorption process.https://jurnal.ugm.ac.id/ijc/article/view/40910adsorptionelectrical arc furnace (eaf) slagbatch experiment
collection DOAJ
language English
format Article
sources DOAJ
author Suhanna Natalya Mohd Suhaimy
Luqman Chuah Abdullah
spellingShingle Suhanna Natalya Mohd Suhaimy
Luqman Chuah Abdullah
Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag
Indonesian Journal of Chemistry
adsorption
electrical arc furnace (eaf) slag
batch experiment
author_facet Suhanna Natalya Mohd Suhaimy
Luqman Chuah Abdullah
author_sort Suhanna Natalya Mohd Suhaimy
title Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag
title_short Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag
title_full Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag
title_fullStr Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag
title_full_unstemmed Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag
title_sort removal of methylene blue from aqueous solution by using electrical arc furnace (eaf) slag
publisher Universitas Gadjah Mada
series Indonesian Journal of Chemistry
issn 1411-9420
2460-1578
publishDate 2019-12-01
description In recent years, environmental protection has gained a major concern. In line with the rapid growth of various industries, high amount of effluent has been generated and discharged to the environment. One of the concerns is the presence of synthetic dye in the wastewater stream, as it may endanger human and aquatic life. In this experiment, the Electrical Arc Furnace (EAF) slag has been used as an adsorbent to remove methylene blue from the aqueous solution. Batch experiments have been conducted, and the effects of initial dye concentration, pH, adsorbent dosage and temperature were studied respectively. Chemical treatment has been performed to modify the adsorbent. The results reveal that treated EAF Slag has higher efficiency in removing methylene blue compared to raw EAF slag. More pores have been exposed, and impurities on the adsorbent’s surface have been removed, to enhance better removal efficiency. The maximum adsorption capacity for treated EAF is 14.2029 mg/g and for raw EAF Slag is 9.615 mg/g. The maximum removal percentage for treated EAF Slag is 71.01%, whereas raw EAF shows 37.19% removal at pH 10. Both raw EAF Slag and treated EAF slag fits the data for the Langmuir isotherm model which obeys the monolayer adsorption process.
topic adsorption
electrical arc furnace (eaf) slag
batch experiment
url https://jurnal.ugm.ac.id/ijc/article/view/40910
work_keys_str_mv AT suhannanatalyamohdsuhaimy removalofmethylenebluefromaqueoussolutionbyusingelectricalarcfurnaceeafslag
AT luqmanchuahabdullah removalofmethylenebluefromaqueoussolutionbyusingelectricalarcfurnaceeafslag
_version_ 1715574918694830080