Summary: | Bearings are considered as indispensable and critical components of mechanical equipment, which support the basic forces and dynamic loads. Across different condition monitoring (CM) techniques, infrared thermography (IRT) has gained the limelight due to its noncontact nature, high accuracy, and reliability. This article presents the use of IRT for the bearing fault diagnosis. A two-dimensional discrete wavelet transform (2D-DWT) has been applied for the decomposition of the thermal image. Principal component analysis (PCA) has been used for the reduction of dimensionality of extracted features, and thereafter the most relevant features are accomplished. Furthermore, support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbor (KNN) as the classifiers were considered for classification of faults and performance assessment. The results reveal that the SVM outperformed LDA as well as KNN. Noncontact condition monitoring shows a great potential to be implemented in determining the health of machine. The utilization of noncontact thermal imaging-based instruments has enormous potential in anticipating the maintenance and increased machine availability.
|