Gene expression profile indicates involvement of uniconazole in Coix lachryma‐jobi L. seedlings at low temperature

Abstract Uniconazole (UNZ) can alleviate a variety of abiotic stresses such as low temperature. With application of UNZ on Coix lachryma‐jobi L. (coix) under low‐temperature stress, growth and physiological parameters were investigated in seedlings. Meanwhile, transcriptome profile in coix seedlings...

Full description

Bibliographic Details
Main Authors: Yulan Huang, Caijun Yue, Junliang Xiang, Yiqiang Han, Jingwei Wang, Liyan Wang, Lifang Sun
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Food Science & Nutrition
Subjects:
Online Access:https://doi.org/10.1002/fsn3.1338
Description
Summary:Abstract Uniconazole (UNZ) can alleviate a variety of abiotic stresses such as low temperature. With application of UNZ on Coix lachryma‐jobi L. (coix) under low‐temperature stress, growth and physiological parameters were investigated in seedlings. Meanwhile, transcriptome profile in coix seedlings was characterized as well. The results showed an increase of 11.90%, 13.59%, and 10.98% in stem diameter, the aboveground and belowground biomass in 5 mg/L uniconazole application group (U3), compared with control check low‐temperature group (CKL). Some anti‐oxidase activities also show significant difference between CKL and U3 (p < .05). Transcriptome results showed that 3,901 and 1,040 genes had different expression level at control check (CK) and CKL, CKL and U3. A considerable number of different expressing genes (DEGs) related to the plant hormone signal transduction, photosynthesis, reactive oxygen species (ROS)‐related genes, and secondary metabolism in response to uniconazole application were identified in this study. The transcriptomic gene expression profiles present a valuable genomic tool to improve studying the molecular mechanisms underlying low‐temperature tolerance in coix. At the same time, it would provide a certain basis for the application of UNZ in the production of coix resistance under low temperature.
ISSN:2048-7177