Self-Assembly of the Bio-Surfactant Aescin in Solution: A Small-Angle X-ray Scattering and Fluorescence Study

This work investigates the temperature-dependent micelle formation as well as the micellar structure of the saponin aescin. The critical micelle concentration (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi>...

Full description

Bibliographic Details
Main Authors: Carina Dargel, Ramsia Geisler, Yvonne Hannappel, Isabell Kemker, Norbert Sewald, Thomas Hellweg
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Colloids and Interfaces
Subjects:
Online Access:https://www.mdpi.com/2504-5377/3/2/47
id doaj-9220f43c8ca548fb92f80f152dba0b66
record_format Article
spelling doaj-9220f43c8ca548fb92f80f152dba0b662020-11-25T01:33:14ZengMDPI AGColloids and Interfaces2504-53772019-04-01324710.3390/colloids3020047colloids3020047Self-Assembly of the Bio-Surfactant Aescin in Solution: A Small-Angle X-ray Scattering and Fluorescence StudyCarina Dargel0Ramsia Geisler1Yvonne Hannappel2Isabell Kemker3Norbert Sewald4Thomas Hellweg5Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, GermanyPhysical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, GermanyPhysical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, GermanyOrganic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, GermanyOrganic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, GermanyPhysical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, GermanyThis work investigates the temperature-dependent micelle formation as well as the micellar structure of the saponin aescin. The critical micelle concentration (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi> <mi>c</mi> </mrow> </semantics> </math> </inline-formula>) of aescin is determined from the concentration-dependent autofluorescence (AF) of aescin. Values between <inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi> <msub> <mi>c</mi> <mrow> <mi>aescin</mi> <mo>,</mo> <mi>AF</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>(10 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C) = 0.38 &#177; 0.09 mM and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi> <msub> <mi>c</mi> <mrow> <mi>aescin</mi> <mo>,</mo> <mi>AF</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>(50 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C) = 0.32 &#177; 0.13 mM were obtained. The significance of this method is verified by tensiometry measurements. The value determined from this method is within the experimental error identical with values obtained from autofluorescence (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi> <msub> <mi>c</mi> <mrow> <mi>aescin</mi> <mo>,</mo> <mi mathvariant="normal">T</mi> <mo>(</mo> <mi>WP</mi> <mo>)</mo> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>(23 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C) = 0.33 &#177; 0.02 mM). The structure of the aescin micelles was investigated by small-angle X-ray scattering (SAXS) at 10 and 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C. At low temperature, the aescin micelles are rod-like, whereas at high temperature the structure is ellipsoidal. The radii of gyration were determined to &#8776;31 &#197; (rods) and &#8776;21 &#197; (ellipsoid). The rod-like shape of the aescin micelles at low temperature was confirmed by transmission electron microscopy (TEM). All investigations were performed at a constant pH of 7.4, because the acidic aescin has the ability to lower the pH value in aqueous solution.https://www.mdpi.com/2504-5377/3/2/47saponinaescincritical micelle concentration (<i>cmc</i>)autofluorescencesmall-angle X-ray scattering (SAXS)transmission electron microscopy (TEM)micelle structure
collection DOAJ
language English
format Article
sources DOAJ
author Carina Dargel
Ramsia Geisler
Yvonne Hannappel
Isabell Kemker
Norbert Sewald
Thomas Hellweg
spellingShingle Carina Dargel
Ramsia Geisler
Yvonne Hannappel
Isabell Kemker
Norbert Sewald
Thomas Hellweg
Self-Assembly of the Bio-Surfactant Aescin in Solution: A Small-Angle X-ray Scattering and Fluorescence Study
Colloids and Interfaces
saponin
aescin
critical micelle concentration (<i>cmc</i>)
autofluorescence
small-angle X-ray scattering (SAXS)
transmission electron microscopy (TEM)
micelle structure
author_facet Carina Dargel
Ramsia Geisler
Yvonne Hannappel
Isabell Kemker
Norbert Sewald
Thomas Hellweg
author_sort Carina Dargel
title Self-Assembly of the Bio-Surfactant Aescin in Solution: A Small-Angle X-ray Scattering and Fluorescence Study
title_short Self-Assembly of the Bio-Surfactant Aescin in Solution: A Small-Angle X-ray Scattering and Fluorescence Study
title_full Self-Assembly of the Bio-Surfactant Aescin in Solution: A Small-Angle X-ray Scattering and Fluorescence Study
title_fullStr Self-Assembly of the Bio-Surfactant Aescin in Solution: A Small-Angle X-ray Scattering and Fluorescence Study
title_full_unstemmed Self-Assembly of the Bio-Surfactant Aescin in Solution: A Small-Angle X-ray Scattering and Fluorescence Study
title_sort self-assembly of the bio-surfactant aescin in solution: a small-angle x-ray scattering and fluorescence study
publisher MDPI AG
series Colloids and Interfaces
issn 2504-5377
publishDate 2019-04-01
description This work investigates the temperature-dependent micelle formation as well as the micellar structure of the saponin aescin. The critical micelle concentration (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi> <mi>c</mi> </mrow> </semantics> </math> </inline-formula>) of aescin is determined from the concentration-dependent autofluorescence (AF) of aescin. Values between <inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi> <msub> <mi>c</mi> <mrow> <mi>aescin</mi> <mo>,</mo> <mi>AF</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>(10 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C) = 0.38 &#177; 0.09 mM and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi> <msub> <mi>c</mi> <mrow> <mi>aescin</mi> <mo>,</mo> <mi>AF</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>(50 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C) = 0.32 &#177; 0.13 mM were obtained. The significance of this method is verified by tensiometry measurements. The value determined from this method is within the experimental error identical with values obtained from autofluorescence (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>m</mi> <msub> <mi>c</mi> <mrow> <mi>aescin</mi> <mo>,</mo> <mi mathvariant="normal">T</mi> <mo>(</mo> <mi>WP</mi> <mo>)</mo> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>(23 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C) = 0.33 &#177; 0.02 mM). The structure of the aescin micelles was investigated by small-angle X-ray scattering (SAXS) at 10 and 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C. At low temperature, the aescin micelles are rod-like, whereas at high temperature the structure is ellipsoidal. The radii of gyration were determined to &#8776;31 &#197; (rods) and &#8776;21 &#197; (ellipsoid). The rod-like shape of the aescin micelles at low temperature was confirmed by transmission electron microscopy (TEM). All investigations were performed at a constant pH of 7.4, because the acidic aescin has the ability to lower the pH value in aqueous solution.
topic saponin
aescin
critical micelle concentration (<i>cmc</i>)
autofluorescence
small-angle X-ray scattering (SAXS)
transmission electron microscopy (TEM)
micelle structure
url https://www.mdpi.com/2504-5377/3/2/47
work_keys_str_mv AT carinadargel selfassemblyofthebiosurfactantaescininsolutionasmallanglexrayscatteringandfluorescencestudy
AT ramsiageisler selfassemblyofthebiosurfactantaescininsolutionasmallanglexrayscatteringandfluorescencestudy
AT yvonnehannappel selfassemblyofthebiosurfactantaescininsolutionasmallanglexrayscatteringandfluorescencestudy
AT isabellkemker selfassemblyofthebiosurfactantaescininsolutionasmallanglexrayscatteringandfluorescencestudy
AT norbertsewald selfassemblyofthebiosurfactantaescininsolutionasmallanglexrayscatteringandfluorescencestudy
AT thomashellweg selfassemblyofthebiosurfactantaescininsolutionasmallanglexrayscatteringandfluorescencestudy
_version_ 1725078594213904384