Some Singular Vector-Valued Jack and Macdonald Polynomials
For each partition <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula> of <i>N</i>, there are irreducible modules of the symmetric groups <inline-formula> <math...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/4/503 |
id |
doaj-9218a9bedcb64623a1be5a8d007a8e8d |
---|---|
record_format |
Article |
spelling |
doaj-9218a9bedcb64623a1be5a8d007a8e8d2020-11-24T21:26:02ZengMDPI AGSymmetry2073-89942019-04-0111450310.3390/sym11040503sym11040503Some Singular Vector-Valued Jack and Macdonald PolynomialsCharles F. Dunkl0Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USAFor each partition <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula> of <i>N</i>, there are irreducible modules of the symmetric groups <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">S</mi> <mi>N</mi> </msub> </semantics> </math> </inline-formula> and of the corresponding Hecke algebra <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>N</mi> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> whose bases consist of the reverse standard Young tableaux of shape <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula>. There are associated spaces of nonsymmetric Jack and Macdonald polynomials taking values in these modules. The Jack polynomials form a special case of the polynomials constructed by Griffeth for the infinite family <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mfenced separators="" open="(" close=")"> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>,</mo> <mi>N</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> of complex reflection groups. The Macdonald polynomials were constructed by Luque and the author. For each of the groups <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">S</mi> <mi>N</mi> </msub> </semantics> </math> </inline-formula> and the Hecke algebra <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>N</mi> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mrow> </semantics> </math> </inline-formula>, there is a commutative set of Dunkl operators. The Jack and the Macdonald polynomials are parametrized by <inline-formula> <math display="inline"> <semantics> <mi>κ</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mi>q</mi> <mo>,</mo> <mi>t</mi> </mfenced> </semantics> </math> </inline-formula>, respectively. For certain values of these parameters (called singular values), there are polynomials annihilated by each Dunkl operator; these are called singular polynomials. This paper analyzes the singular polynomials whose leading term is <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>x</mi> <mrow> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <mo>⊗</mo> <mi>S</mi> </mrow> </semantics> </math> </inline-formula>, where <i>S</i> is an arbitrary reverse standard Young tableau of shape <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula>. The singular values depend on the properties of the edge of the Ferrers diagram of <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula>.https://www.mdpi.com/2073-8994/11/4/503nonsymmetric Jack and Macdonald polynomialssingular valuesYoung tableauxHecke algebra |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Charles F. Dunkl |
spellingShingle |
Charles F. Dunkl Some Singular Vector-Valued Jack and Macdonald Polynomials Symmetry nonsymmetric Jack and Macdonald polynomials singular values Young tableaux Hecke algebra |
author_facet |
Charles F. Dunkl |
author_sort |
Charles F. Dunkl |
title |
Some Singular Vector-Valued Jack and Macdonald Polynomials |
title_short |
Some Singular Vector-Valued Jack and Macdonald Polynomials |
title_full |
Some Singular Vector-Valued Jack and Macdonald Polynomials |
title_fullStr |
Some Singular Vector-Valued Jack and Macdonald Polynomials |
title_full_unstemmed |
Some Singular Vector-Valued Jack and Macdonald Polynomials |
title_sort |
some singular vector-valued jack and macdonald polynomials |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2019-04-01 |
description |
For each partition <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula> of <i>N</i>, there are irreducible modules of the symmetric groups <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">S</mi> <mi>N</mi> </msub> </semantics> </math> </inline-formula> and of the corresponding Hecke algebra <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>N</mi> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> whose bases consist of the reverse standard Young tableaux of shape <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula>. There are associated spaces of nonsymmetric Jack and Macdonald polynomials taking values in these modules. The Jack polynomials form a special case of the polynomials constructed by Griffeth for the infinite family <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mfenced separators="" open="(" close=")"> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>,</mo> <mi>N</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> of complex reflection groups. The Macdonald polynomials were constructed by Luque and the author. For each of the groups <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">S</mi> <mi>N</mi> </msub> </semantics> </math> </inline-formula> and the Hecke algebra <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>N</mi> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mrow> </semantics> </math> </inline-formula>, there is a commutative set of Dunkl operators. The Jack and the Macdonald polynomials are parametrized by <inline-formula> <math display="inline"> <semantics> <mi>κ</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mi>q</mi> <mo>,</mo> <mi>t</mi> </mfenced> </semantics> </math> </inline-formula>, respectively. For certain values of these parameters (called singular values), there are polynomials annihilated by each Dunkl operator; these are called singular polynomials. This paper analyzes the singular polynomials whose leading term is <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>x</mi> <mrow> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <mo>⊗</mo> <mi>S</mi> </mrow> </semantics> </math> </inline-formula>, where <i>S</i> is an arbitrary reverse standard Young tableau of shape <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula>. The singular values depend on the properties of the edge of the Ferrers diagram of <inline-formula> <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> </inline-formula>. |
topic |
nonsymmetric Jack and Macdonald polynomials singular values Young tableaux Hecke algebra |
url |
https://www.mdpi.com/2073-8994/11/4/503 |
work_keys_str_mv |
AT charlesfdunkl somesingularvectorvaluedjackandmacdonaldpolynomials |
_version_ |
1725981404990275584 |