Some Singular Vector-Valued Jack and Macdonald Polynomials

For each partition <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula> of <i>N</i>, there are irreducible modules of the symmetric groups <inline-formula> <math...

Full description

Bibliographic Details
Main Author: Charles F. Dunkl
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/4/503
id doaj-9218a9bedcb64623a1be5a8d007a8e8d
record_format Article
spelling doaj-9218a9bedcb64623a1be5a8d007a8e8d2020-11-24T21:26:02ZengMDPI AGSymmetry2073-89942019-04-0111450310.3390/sym11040503sym11040503Some Singular Vector-Valued Jack and Macdonald PolynomialsCharles F. Dunkl0Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USAFor each partition <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula> of <i>N</i>, there are irreducible modules of the symmetric groups <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">S</mi> <mi>N</mi> </msub> </semantics> </math> </inline-formula> and of the corresponding Hecke algebra <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>N</mi> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> whose bases consist of the reverse standard Young tableaux of shape <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula>. There are associated spaces of nonsymmetric Jack and Macdonald polynomials taking values in these modules. The Jack polynomials form a special case of the polynomials constructed by Griffeth for the infinite family <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mfenced separators="" open="(" close=")"> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>,</mo> <mi>N</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> of complex reflection groups. The Macdonald polynomials were constructed by Luque and the author. For each of the groups <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">S</mi> <mi>N</mi> </msub> </semantics> </math> </inline-formula> and the Hecke algebra <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>N</mi> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mrow> </semantics> </math> </inline-formula>, there is a commutative set of Dunkl operators. The Jack and the Macdonald polynomials are parametrized by <inline-formula> <math display="inline"> <semantics> <mi>&#954;</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mi>q</mi> <mo>,</mo> <mi>t</mi> </mfenced> </semantics> </math> </inline-formula>, respectively. For certain values of these parameters (called singular values), there are polynomials annihilated by each Dunkl operator; these are called singular polynomials. This paper analyzes the singular polynomials whose leading term is <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>x</mi> <mrow> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <mo>&otimes;</mo> <mi>S</mi> </mrow> </semantics> </math> </inline-formula>, where <i>S</i> is an arbitrary reverse standard Young tableau of shape <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula>. The singular values depend on the properties of the edge of the Ferrers diagram of <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula>.https://www.mdpi.com/2073-8994/11/4/503nonsymmetric Jack and Macdonald polynomialssingular valuesYoung tableauxHecke algebra
collection DOAJ
language English
format Article
sources DOAJ
author Charles F. Dunkl
spellingShingle Charles F. Dunkl
Some Singular Vector-Valued Jack and Macdonald Polynomials
Symmetry
nonsymmetric Jack and Macdonald polynomials
singular values
Young tableaux
Hecke algebra
author_facet Charles F. Dunkl
author_sort Charles F. Dunkl
title Some Singular Vector-Valued Jack and Macdonald Polynomials
title_short Some Singular Vector-Valued Jack and Macdonald Polynomials
title_full Some Singular Vector-Valued Jack and Macdonald Polynomials
title_fullStr Some Singular Vector-Valued Jack and Macdonald Polynomials
title_full_unstemmed Some Singular Vector-Valued Jack and Macdonald Polynomials
title_sort some singular vector-valued jack and macdonald polynomials
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-04-01
description For each partition <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula> of <i>N</i>, there are irreducible modules of the symmetric groups <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">S</mi> <mi>N</mi> </msub> </semantics> </math> </inline-formula> and of the corresponding Hecke algebra <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>N</mi> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> whose bases consist of the reverse standard Young tableaux of shape <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula>. There are associated spaces of nonsymmetric Jack and Macdonald polynomials taking values in these modules. The Jack polynomials form a special case of the polynomials constructed by Griffeth for the infinite family <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mfenced separators="" open="(" close=")"> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>,</mo> <mi>N</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> of complex reflection groups. The Macdonald polynomials were constructed by Luque and the author. For each of the groups <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">S</mi> <mi>N</mi> </msub> </semantics> </math> </inline-formula> and the Hecke algebra <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>N</mi> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mrow> </semantics> </math> </inline-formula>, there is a commutative set of Dunkl operators. The Jack and the Macdonald polynomials are parametrized by <inline-formula> <math display="inline"> <semantics> <mi>&#954;</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mi>q</mi> <mo>,</mo> <mi>t</mi> </mfenced> </semantics> </math> </inline-formula>, respectively. For certain values of these parameters (called singular values), there are polynomials annihilated by each Dunkl operator; these are called singular polynomials. This paper analyzes the singular polynomials whose leading term is <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>x</mi> <mrow> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <mo>&otimes;</mo> <mi>S</mi> </mrow> </semantics> </math> </inline-formula>, where <i>S</i> is an arbitrary reverse standard Young tableau of shape <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula>. The singular values depend on the properties of the edge of the Ferrers diagram of <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula>.
topic nonsymmetric Jack and Macdonald polynomials
singular values
Young tableaux
Hecke algebra
url https://www.mdpi.com/2073-8994/11/4/503
work_keys_str_mv AT charlesfdunkl somesingularvectorvaluedjackandmacdonaldpolynomials
_version_ 1725981404990275584