Partitioning of Metal Contaminants between Bulk and Fine-Grained Fraction in Freshwater Sediments: A Critical Appraisal

The distribution of six common metal contaminants (Cd, Cr, Cu, Ni, Pb, Zn) in the bulk (<2 mm) and fine fractions (<63 µm) of freshwater sediments was compared to conclude on the long-existing dilemma which fraction should be used in the investigation of the metal contamination. The environmen...

Full description

Bibliographic Details
Main Authors: Neda Vdović, Mavro Lučić, Nevenka Mikac, Niko Bačić
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/11/6/603
Description
Summary:The distribution of six common metal contaminants (Cd, Cr, Cu, Ni, Pb, Zn) in the bulk (<2 mm) and fine fractions (<63 µm) of freshwater sediments was compared to conclude on the long-existing dilemma which fraction should be used in the investigation of the metal contamination. The environments included in the study (24 rivers, 8 lakes) were very different with respect to sediments origin and composition and they provided a good review of the possible scenarios. For the river sediments, particularly those having >40% of sand fraction, metal concentrations were up to seven times higher in the fine fraction, implying the necessity for considering sand dilution effect in compositional data analysis. The same samples were also characterized with higher organic matter content (OM) in the fine fraction. Lake environments were characterized by fine-grained sedimentation and the difference between metal concentrations in the bulk and fine fraction was not so expressed. The preparation of samples for the geochemical and compositional data mining should be carried out in accordance with the sedimentological characteristics of the investigated environment. It implies that the insight into geological setting and determination of sedimentological characteristics should be an obligatory part of monitoring/investigating metal contamination in freshwater sediments. For river sediments, the analysis of the fine sediment fraction or correction for sediment lithology are advisable.
ISSN:2075-163X