Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds
In diseases such as cancer, Alzheimer’s disease or malaria, disease-related proteins take advantage of the heat shock protein (HSP) control system for their own activation or maturation. There is a quest to find inhibitors that specifically bind to the HSPs. Here, we report on a novel multiplexed as...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Pensoft Publishers
2014-12-01
|
Series: | BioDiscovery |
Subjects: | |
Online Access: | https://biodiscovery.pensoft.net/article/8963/download/pdf/ |
id |
doaj-91f7d7feff9a4176b4397e138c48cddf |
---|---|
record_format |
Article |
spelling |
doaj-91f7d7feff9a4176b4397e138c48cddf2020-11-25T01:37:54ZengPensoft PublishersBioDiscovery2050-29662014-12-01141610.7750/BioDiscovery.2014.14.18963Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compoundsEmilia SchaxJanek NeunaberFrank StahlJohanna-Gabriela WalterThomas ScheperSimone EichnerAndreas KirschningCarsten ZeilingerIn diseases such as cancer, Alzheimer’s disease or malaria, disease-related proteins take advantage of the heat shock protein (HSP) control system for their own activation or maturation. There is a quest to find inhibitors that specifically bind to the HSPs. Here, we report on a novel multiplexed assay system for inhibitor screening based on a protein microarray (MA) technique that was developed for routine applications with storable MAs. Purified HSPs are printed as full-length proteins on microarrays and used as a drug target for the screening of new inhibitors. Derivatives obtained by a combination of biological and chemical synthesis were tested as competitors of ATP with a suggested affinity for several HSP proteins which are hHSP from human, AtHSP83 (<em>Arabidopsis thaliana</em>) and HtpG from <em>Helicobacter pylori</em>. Some of these new derivatives exerted selectivity between human and bacterial heat shock proteins. Printed human HSP90 was used to test the binding of denatured proteins on the client binding site of human HSP90, since the full-length HSP maintains the capability to bind putative clients or cochaperones. Initial data revealed that the microarray application can be used to identify directly elevated heat-shock protein levels in cancer cell lysates. We suggest that microarray-based assaying of HSP levels can be used as a marker for determining stress levels.https://biodiscovery.pensoft.net/article/8963/download/pdf/heat shock proteininhibitornon benzoquinone ge |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Emilia Schax Janek Neunaber Frank Stahl Johanna-Gabriela Walter Thomas Scheper Simone Eichner Andreas Kirschning Carsten Zeilinger |
spellingShingle |
Emilia Schax Janek Neunaber Frank Stahl Johanna-Gabriela Walter Thomas Scheper Simone Eichner Andreas Kirschning Carsten Zeilinger Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds BioDiscovery heat shock protein inhibitor non benzoquinone ge |
author_facet |
Emilia Schax Janek Neunaber Frank Stahl Johanna-Gabriela Walter Thomas Scheper Simone Eichner Andreas Kirschning Carsten Zeilinger |
author_sort |
Emilia Schax |
title |
Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds |
title_short |
Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds |
title_full |
Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds |
title_fullStr |
Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds |
title_full_unstemmed |
Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds |
title_sort |
multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds |
publisher |
Pensoft Publishers |
series |
BioDiscovery |
issn |
2050-2966 |
publishDate |
2014-12-01 |
description |
In diseases such as cancer, Alzheimer’s disease or malaria, disease-related proteins take advantage of the heat shock protein (HSP) control system for their own activation or maturation. There is a quest to find inhibitors that specifically bind to the HSPs. Here, we report on a novel multiplexed assay system for inhibitor screening based on a protein microarray (MA) technique that was developed for routine applications with storable MAs. Purified HSPs are printed as full-length proteins on microarrays and used as a drug target for the screening of new inhibitors. Derivatives obtained by a combination of biological and chemical synthesis were tested as competitors of ATP with a suggested affinity for several HSP proteins which are hHSP from human, AtHSP83 (<em>Arabidopsis thaliana</em>) and HtpG from <em>Helicobacter pylori</em>. Some of these new derivatives exerted selectivity between human and bacterial heat shock proteins. Printed human HSP90 was used to test the binding of denatured proteins on the client binding site of human HSP90, since the full-length HSP maintains the capability to bind putative clients or cochaperones. Initial data revealed that the microarray application can be used to identify directly elevated heat-shock protein levels in cancer cell lysates. We suggest that microarray-based assaying of HSP levels can be used as a marker for determining stress levels. |
topic |
heat shock protein inhibitor non benzoquinone ge |
url |
https://biodiscovery.pensoft.net/article/8963/download/pdf/ |
work_keys_str_mv |
AT emiliaschax multiplexedheatshockproteinmicroarrayasascreeningplatformfortheselectionofnoveldrugcompounds AT janekneunaber multiplexedheatshockproteinmicroarrayasascreeningplatformfortheselectionofnoveldrugcompounds AT frankstahl multiplexedheatshockproteinmicroarrayasascreeningplatformfortheselectionofnoveldrugcompounds AT johannagabrielawalter multiplexedheatshockproteinmicroarrayasascreeningplatformfortheselectionofnoveldrugcompounds AT thomasscheper multiplexedheatshockproteinmicroarrayasascreeningplatformfortheselectionofnoveldrugcompounds AT simoneeichner multiplexedheatshockproteinmicroarrayasascreeningplatformfortheselectionofnoveldrugcompounds AT andreaskirschning multiplexedheatshockproteinmicroarrayasascreeningplatformfortheselectionofnoveldrugcompounds AT carstenzeilinger multiplexedheatshockproteinmicroarrayasascreeningplatformfortheselectionofnoveldrugcompounds |
_version_ |
1725056690100895744 |