Crystal structure, spectral characterization, molecular modeling studies and structural effects of the proton transfer process for (E)-5-methoxy-2-[(3,4-dimethylphenylimino) methyl]phenol

The main purpose of this study is to characterize a new organic material, (E)-5-methoxy-2-[(3,4-dimethylphenylimino)methyl]phenol, which was synthesized and grown as a single crystal. The molecular structure and spectroscopic properties of the ortho-hydroxy Schiff base compound were determined by X-...

Full description

Bibliographic Details
Main Authors: Basak Kosar Kirca, Gonca Ozdemir Tarı, Cıgdem Albayrak Kastas, Mustafa Odabasoglu, Orhan Buyukgungor
Format: Article
Language:English
Published: Society of Chemists and Technologists of Macedonia 2017-12-01
Series:Macedonian Journal of Chemistry and Chemical Engineering
Subjects:
nlo
dft
Online Access:https://mjcce.org.mk/index.php/MJCCE/article/view/1295
Description
Summary:The main purpose of this study is to characterize a new organic material, (E)-5-methoxy-2-[(3,4-dimethylphenylimino)methyl]phenol, which was synthesized and grown as a single crystal. The molecular structure and spectroscopic properties of the ortho-hydroxy Schiff base compound were determined by X-ray diffraction analysis, Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy techniques, experimentally and computationally with density functional theory (DFT) calculations. X-ray and UV-Vis studies show that the compound exists in an OH tautomeric form in the solid and solvent media. The gas phase geometry optimizations of two possible forms of the title compound, resulting from the prototropic tautomerism, were obtained using DFT calculations at the B3LYP/6-311G+(d,p) level of theory. A relaxed potential energy surface (PES) scan was performed based on the optimized geometry of the OH tautomeric form by varying the redundant internal coordinate, the O-H bond distance. According to the PES scan process, the molecular geometry is strongly affected by the intramolecular proton transfer. The calculated first hyperpolarizability indicates that the compound could be a good material for non-linear optical applications.
ISSN:1857-5552
1857-5625