High order perturbation theory for difference equations and Borel summability of quantum mirror curves

Abstract We adapt the Bender-Wu algorithm to solve perturbatively but very efficiently the eigenvalue problem of "relativistic" quantum mechanical problems whose Hamiltonians are difference operators of the exponential-polynomial type. We implement the algorithm in the function BWDifferenc...

Full description

Bibliographic Details
Main Authors: Jie Gu, Tin Sulejmanpasic
Format: Article
Language:English
Published: SpringerOpen 2017-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP12(2017)014
Description
Summary:Abstract We adapt the Bender-Wu algorithm to solve perturbatively but very efficiently the eigenvalue problem of "relativistic" quantum mechanical problems whose Hamiltonians are difference operators of the exponential-polynomial type. We implement the algorithm in the function BWDifference in the updated Mathematica package BenderWu. With the help of BWDifference, we survey quantum mirror curves of toric fano Calabi-Yau threefolds, and find strong evidence that not only are the perturbative eigenenergies of the associated 1d quantum mechanical problems Borel summable, but also that the Borel sums are exact.
ISSN:1029-8479