The Influence of Iron Concentration on the Mechanical Properties of A356 Al Alloy for Car Rims Application

A356.0 aluminum-silicon alloy is a base material for car rims application. Car rims are critical components for a vehicle as they carry the load of the passengers, goods, and the weight of the vehicle itself, therefore they should be sufficiently strong to withstand the vertical load, fatigue load,...

Full description

Bibliographic Details
Main Authors: Victor Yuardi Risonarta, Juliana Anggono, Geraldi Raka Aditya
Format: Article
Language:English
Published: University of Brawijaya 2020-05-01
Series:Rekayasa Mesin
Subjects:
Online Access:https://rekayasamesin.ub.ac.id/index.php/rm/article/view/606
id doaj-91ce04dd3fd74927a995d7f685820e57
record_format Article
spelling doaj-91ce04dd3fd74927a995d7f685820e572020-11-25T02:33:59ZengUniversity of BrawijayaRekayasa Mesin2338-16632477-60412020-05-01111616810.21776/ub.jrm.2020.011.01.7389The Influence of Iron Concentration on the Mechanical Properties of A356 Al Alloy for Car Rims ApplicationVictor Yuardi Risonarta0Juliana Anggono1Geraldi Raka Aditya2(SCOPUS ID: 20434533200; h index: 3), Universitas BrawijayaPetra Christian UniversityPetra Christian UniversityA356.0 aluminum-silicon alloy is a base material for car rims application. Car rims are critical components for a vehicle as they carry the load of the passengers, goods, and the weight of the vehicle itself, therefore they should be sufficiently strong to withstand the vertical load, fatigue load, impact load, the side load and the braking force. Car rims are made by gravity die casting process. During the casting process, the inclusion of iron-content parts entering the molten Al can take place which leads to higher iron (Fe) concentration. High Fe con concentration lowers the toughness and the ductility of car rims. This study investigates the maximum value of Fe concentration that can be tolerated for acceptable mechanical properties of Al-Si alloy A356.0 for car rims application. The Fe concentration studied was 0.12 %wt, 0.16 %wt, and 0.20 %wt. Evaluation was performed on tensile and impact properties of the specimens. The test results show that increased Fe concentration decreases elongation, yield strength and ultimate tensile strength (UTS). Furthermore, there is a quite large decrease in UTS (by 34 MPa) when Fe concentration increases only by 0.06 %wt.  Impact strength decreases significantly from 15.47 to 2.91J/cm2 as Fe concentration content increases from 0.12 %wt. to 0.16 %wt. The porosity present in the casting is predicted to contribute to the ductility decrease. In addition, the decreasing value of UTS is predicted due to grain growth and dendrites formation. It is recommended that the maximum allowable Fe concentration for car rims application is 0.12 %wt.https://rekayasamesin.ub.ac.id/index.php/rm/article/view/606al-silicon alloycar wheelstensile propertiesmicrostructuregravity die casting
collection DOAJ
language English
format Article
sources DOAJ
author Victor Yuardi Risonarta
Juliana Anggono
Geraldi Raka Aditya
spellingShingle Victor Yuardi Risonarta
Juliana Anggono
Geraldi Raka Aditya
The Influence of Iron Concentration on the Mechanical Properties of A356 Al Alloy for Car Rims Application
Rekayasa Mesin
al-silicon alloy
car wheels
tensile properties
microstructure
gravity die casting
author_facet Victor Yuardi Risonarta
Juliana Anggono
Geraldi Raka Aditya
author_sort Victor Yuardi Risonarta
title The Influence of Iron Concentration on the Mechanical Properties of A356 Al Alloy for Car Rims Application
title_short The Influence of Iron Concentration on the Mechanical Properties of A356 Al Alloy for Car Rims Application
title_full The Influence of Iron Concentration on the Mechanical Properties of A356 Al Alloy for Car Rims Application
title_fullStr The Influence of Iron Concentration on the Mechanical Properties of A356 Al Alloy for Car Rims Application
title_full_unstemmed The Influence of Iron Concentration on the Mechanical Properties of A356 Al Alloy for Car Rims Application
title_sort influence of iron concentration on the mechanical properties of a356 al alloy for car rims application
publisher University of Brawijaya
series Rekayasa Mesin
issn 2338-1663
2477-6041
publishDate 2020-05-01
description A356.0 aluminum-silicon alloy is a base material for car rims application. Car rims are critical components for a vehicle as they carry the load of the passengers, goods, and the weight of the vehicle itself, therefore they should be sufficiently strong to withstand the vertical load, fatigue load, impact load, the side load and the braking force. Car rims are made by gravity die casting process. During the casting process, the inclusion of iron-content parts entering the molten Al can take place which leads to higher iron (Fe) concentration. High Fe con concentration lowers the toughness and the ductility of car rims. This study investigates the maximum value of Fe concentration that can be tolerated for acceptable mechanical properties of Al-Si alloy A356.0 for car rims application. The Fe concentration studied was 0.12 %wt, 0.16 %wt, and 0.20 %wt. Evaluation was performed on tensile and impact properties of the specimens. The test results show that increased Fe concentration decreases elongation, yield strength and ultimate tensile strength (UTS). Furthermore, there is a quite large decrease in UTS (by 34 MPa) when Fe concentration increases only by 0.06 %wt.  Impact strength decreases significantly from 15.47 to 2.91J/cm2 as Fe concentration content increases from 0.12 %wt. to 0.16 %wt. The porosity present in the casting is predicted to contribute to the ductility decrease. In addition, the decreasing value of UTS is predicted due to grain growth and dendrites formation. It is recommended that the maximum allowable Fe concentration for car rims application is 0.12 %wt.
topic al-silicon alloy
car wheels
tensile properties
microstructure
gravity die casting
url https://rekayasamesin.ub.ac.id/index.php/rm/article/view/606
work_keys_str_mv AT victoryuardirisonarta theinfluenceofironconcentrationonthemechanicalpropertiesofa356alalloyforcarrimsapplication
AT julianaanggono theinfluenceofironconcentrationonthemechanicalpropertiesofa356alalloyforcarrimsapplication
AT geraldirakaaditya theinfluenceofironconcentrationonthemechanicalpropertiesofa356alalloyforcarrimsapplication
AT victoryuardirisonarta influenceofironconcentrationonthemechanicalpropertiesofa356alalloyforcarrimsapplication
AT julianaanggono influenceofironconcentrationonthemechanicalpropertiesofa356alalloyforcarrimsapplication
AT geraldirakaaditya influenceofironconcentrationonthemechanicalpropertiesofa356alalloyforcarrimsapplication
_version_ 1724810958452293632