Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design
During the mid-Pliocene warm period (3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the next century and atmospheric carbon dioxide concentrations were slightly higher than today. Sea level was also higher than today, implying a reduction in the extent o...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-07-01
|
Series: | Geoscientific Model Development |
Online Access: | http://www.geosci-model-dev.net/5/963/2012/gmd-5-963-2012.pdf |
id |
doaj-91bfbe24a5bb417ab3678033d800b7d5 |
---|---|
record_format |
Article |
spelling |
doaj-91bfbe24a5bb417ab3678033d800b7d52020-11-24T23:14:10ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032012-07-015496397410.5194/gmd-5-963-2012Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental designA. M. DolanS. J. KoenigD. J. HillA. M. HaywoodR. M. DeContoDuring the mid-Pliocene warm period (3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the next century and atmospheric carbon dioxide concentrations were slightly higher than today. Sea level was also higher than today, implying a reduction in the extent of the ice sheets. Thus, the mid-Pliocene warm period (mPWP) provides a unique testing ground to investigate the stability of the Earth's ice sheets and their contribution to sea level in a warmer-than-modern world. Climate models and ice sheet models can be used to enhance our understanding of ice sheet stability; however, uncertainties associated with different ice-sheet modelling frameworks mean that a rigorous comparison of numerical ice sheet model simulations for the Pliocene is essential. As an extension to the Pliocene Model Intercomparison Project (PlioMIP; Haywood et al., 2010, 2011a), the Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) will provide the first assessment as to the ice sheet model dependency of ice sheet predictions for the mPWP. Here we outline the PLISMIP experimental design and initialisation conditions that have been adopted to simulate the Greenland and Antarctic ice sheets under present-day and warm mid-Pliocene conditions. Not only will this project provide a new benchmark in the simulation of ice sheets in a past warm period, but the analysis of model sensitivity to various uncertainties could directly inform future predictions of ice sheet and sea level change.http://www.geosci-model-dev.net/5/963/2012/gmd-5-963-2012.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. M. Dolan S. J. Koenig D. J. Hill A. M. Haywood R. M. DeConto |
spellingShingle |
A. M. Dolan S. J. Koenig D. J. Hill A. M. Haywood R. M. DeConto Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design Geoscientific Model Development |
author_facet |
A. M. Dolan S. J. Koenig D. J. Hill A. M. Haywood R. M. DeConto |
author_sort |
A. M. Dolan |
title |
Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design |
title_short |
Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design |
title_full |
Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design |
title_fullStr |
Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design |
title_full_unstemmed |
Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design |
title_sort |
pliocene ice sheet modelling intercomparison project (plismip) – experimental design |
publisher |
Copernicus Publications |
series |
Geoscientific Model Development |
issn |
1991-959X 1991-9603 |
publishDate |
2012-07-01 |
description |
During the mid-Pliocene warm period (3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the next century and atmospheric carbon dioxide concentrations were slightly higher than today. Sea level was also higher than today, implying a reduction in the extent of the ice sheets. Thus, the mid-Pliocene warm period (mPWP) provides a unique testing ground to investigate the stability of the Earth's ice sheets and their contribution to sea level in a warmer-than-modern world. Climate models and ice sheet models can be used to enhance our understanding of ice sheet stability; however, uncertainties associated with different ice-sheet modelling frameworks mean that a rigorous comparison of numerical ice sheet model simulations for the Pliocene is essential. As an extension to the Pliocene Model Intercomparison Project (PlioMIP; Haywood et al., 2010, 2011a), the Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) will provide the first assessment as to the ice sheet model dependency of ice sheet predictions for the mPWP. Here we outline the PLISMIP experimental design and initialisation conditions that have been adopted to simulate the Greenland and Antarctic ice sheets under present-day and warm mid-Pliocene conditions. Not only will this project provide a new benchmark in the simulation of ice sheets in a past warm period, but the analysis of model sensitivity to various uncertainties could directly inform future predictions of ice sheet and sea level change. |
url |
http://www.geosci-model-dev.net/5/963/2012/gmd-5-963-2012.pdf |
work_keys_str_mv |
AT amdolan plioceneicesheetmodellingintercomparisonprojectplismipexperimentaldesign AT sjkoenig plioceneicesheetmodellingintercomparisonprojectplismipexperimentaldesign AT djhill plioceneicesheetmodellingintercomparisonprojectplismipexperimentaldesign AT amhaywood plioceneicesheetmodellingintercomparisonprojectplismipexperimentaldesign AT rmdeconto plioceneicesheetmodellingintercomparisonprojectplismipexperimentaldesign |
_version_ |
1725595805358751744 |