On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain
We consider the reaction-diusion equation with multi-valued interaction function. We investigate the qualitative behavior of all weak solutions under the standard growth and sign conditions. We prove that dynamics of all weak solutions for the investigated problem is nite dimensional up to a small p...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
DNU
2016-05-01
|
Series: | Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ |
Subjects: | |
Online Access: | http://model-dnu.dp.ua/index.php/SM/article/view/96 |
id |
doaj-91bd53d24d69407a9e4f78cfae81660f |
---|---|
record_format |
Article |
spelling |
doaj-91bd53d24d69407a9e4f78cfae81660f2020-11-25T01:06:52ZengDNUVìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ2312-45472415-73252016-05-01248202510.15421/14160295On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domainN. V. Gorban0P. O. Kasyanov1L. S. Paliichuk2“Institute for Applied System Analysis”, National Technical University of Ukraine “Kyiv Polytechnic Institute”“Institute for Applied System Analysis”, National Technical University of Ukraine “Kyiv Polytechnic Institute”“Institute for Applied System Analysis”, National Technical University of Ukraine “Kyiv Polytechnic Institute”We consider the reaction-diusion equation with multi-valued interaction function. We investigate the qualitative behavior of all weak solutions under the standard growth and sign conditions. We prove that dynamics of all weak solutions for the investigated problem is nite dimensional up to a small parameter.http://model-dnu.dp.ua/index.php/SM/article/view/96reaction-diffusion equationweak solutionmulti-valued semi-flow |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
N. V. Gorban P. O. Kasyanov L. S. Paliichuk |
spellingShingle |
N. V. Gorban P. O. Kasyanov L. S. Paliichuk On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ reaction-diffusion equation weak solution multi-valued semi-flow |
author_facet |
N. V. Gorban P. O. Kasyanov L. S. Paliichuk |
author_sort |
N. V. Gorban |
title |
On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain |
title_short |
On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain |
title_full |
On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain |
title_fullStr |
On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain |
title_full_unstemmed |
On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain |
title_sort |
on nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain |
publisher |
DNU |
series |
Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ |
issn |
2312-4547 2415-7325 |
publishDate |
2016-05-01 |
description |
We consider the reaction-diusion equation with multi-valued interaction function.
We investigate the qualitative behavior of all weak solutions under the standard growth and sign conditions. We prove that dynamics of all weak solutions for the investigated problem is nite dimensional up to a small parameter. |
topic |
reaction-diffusion equation weak solution multi-valued semi-flow |
url |
http://model-dnu.dp.ua/index.php/SM/article/view/96 |
work_keys_str_mv |
AT nvgorban onnitedimensionaldynamicsuptoasmallparameterofreactiondiusioninclusioninunboundeddomain AT pokasyanov onnitedimensionaldynamicsuptoasmallparameterofreactiondiusioninclusioninunboundeddomain AT lspaliichuk onnitedimensionaldynamicsuptoasmallparameterofreactiondiusioninclusioninunboundeddomain |
_version_ |
1725187883613028352 |