On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain

We consider the reaction-diusion equation with multi-valued interaction function. We investigate the qualitative behavior of all weak solutions under the standard growth and sign conditions. We prove that dynamics of all weak solutions for the investigated problem is nite dimensional up to a small p...

Full description

Bibliographic Details
Main Authors: N. V. Gorban, P. O. Kasyanov, L. S. Paliichuk
Format: Article
Language:English
Published: DNU 2016-05-01
Series:Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ
Subjects:
Online Access:http://model-dnu.dp.ua/index.php/SM/article/view/96
id doaj-91bd53d24d69407a9e4f78cfae81660f
record_format Article
spelling doaj-91bd53d24d69407a9e4f78cfae81660f2020-11-25T01:06:52ZengDNUVìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ2312-45472415-73252016-05-01248202510.15421/14160295On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domainN. V. Gorban0P. O. Kasyanov1L. S. Paliichuk2“Institute for Applied System Analysis”, National Technical University of Ukraine “Kyiv Polytechnic Institute”“Institute for Applied System Analysis”, National Technical University of Ukraine “Kyiv Polytechnic Institute”“Institute for Applied System Analysis”, National Technical University of Ukraine “Kyiv Polytechnic Institute”We consider the reaction-diusion equation with multi-valued interaction function. We investigate the qualitative behavior of all weak solutions under the standard growth and sign conditions. We prove that dynamics of all weak solutions for the investigated problem is nite dimensional up to a small parameter.http://model-dnu.dp.ua/index.php/SM/article/view/96reaction-diffusion equationweak solutionmulti-valued semi-flow
collection DOAJ
language English
format Article
sources DOAJ
author N. V. Gorban
P. O. Kasyanov
L. S. Paliichuk
spellingShingle N. V. Gorban
P. O. Kasyanov
L. S. Paliichuk
On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain
Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ
reaction-diffusion equation
weak solution
multi-valued semi-flow
author_facet N. V. Gorban
P. O. Kasyanov
L. S. Paliichuk
author_sort N. V. Gorban
title On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain
title_short On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain
title_full On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain
title_fullStr On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain
title_full_unstemmed On nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain
title_sort on nite dimensional dynamics up to a small parameter of reaction-diusion inclusion in unbounded domain
publisher DNU
series Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ
issn 2312-4547
2415-7325
publishDate 2016-05-01
description We consider the reaction-diusion equation with multi-valued interaction function. We investigate the qualitative behavior of all weak solutions under the standard growth and sign conditions. We prove that dynamics of all weak solutions for the investigated problem is nite dimensional up to a small parameter.
topic reaction-diffusion equation
weak solution
multi-valued semi-flow
url http://model-dnu.dp.ua/index.php/SM/article/view/96
work_keys_str_mv AT nvgorban onnitedimensionaldynamicsuptoasmallparameterofreactiondiusioninclusioninunboundeddomain
AT pokasyanov onnitedimensionaldynamicsuptoasmallparameterofreactiondiusioninclusioninunboundeddomain
AT lspaliichuk onnitedimensionaldynamicsuptoasmallparameterofreactiondiusioninclusioninunboundeddomain
_version_ 1725187883613028352