Nonlinear modes disentangle glassy and Goldstone modes in structural glasses

One outstanding problem in the physics of glassy solids is understanding the statistics and properties of the low-energy excitations that stem from the disorder that characterizes these systems' microstructure. In this work we introduce a family of algebraic equations whose solutions represent...

Full description

Bibliographic Details
Main Author: Luka Gartner, Edan Lerner
Format: Article
Language:English
Published: SciPost 2016-12-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.1.2.016
id doaj-91ba1894b5ec40bab8930a0f71fd6658
record_format Article
spelling doaj-91ba1894b5ec40bab8930a0f71fd66582020-11-25T00:26:36ZengSciPostSciPost Physics2542-46532016-12-011201610.21468/SciPostPhys.1.2.016Nonlinear modes disentangle glassy and Goldstone modes in structural glassesLuka Gartner, Edan LernerOne outstanding problem in the physics of glassy solids is understanding the statistics and properties of the low-energy excitations that stem from the disorder that characterizes these systems' microstructure. In this work we introduce a family of algebraic equations whose solutions represent collective displacement directions (modes) in the multi-dimensional configuration space of a structural glass. We explain why solutions of the algebraic equations, coined nonlinear glassy modes, are quasi-localized low-energy excitations. We present an iterative method to solve the algebraic equations, and use it to study the energetic and structural properties of a selected subset of their solutions constructed by starting from a normal mode analysis of the potential energy of a model glass. Our key result is that the structure and energies associated with harmonic glassy vibrational modes and their nonlinear counterparts converge in the limit of very low frequencies. As nonlinear modes never suffer hybridizations, our result implies that the presented theoretical framework constitutes a robust alternative definition of `soft glassy modes' in the thermodynamic limit, in which Goldstone modes overwhelm and destroy the identity of low-frequency harmonic glassy modes.https://scipost.org/SciPostPhys.1.2.016
collection DOAJ
language English
format Article
sources DOAJ
author Luka Gartner, Edan Lerner
spellingShingle Luka Gartner, Edan Lerner
Nonlinear modes disentangle glassy and Goldstone modes in structural glasses
SciPost Physics
author_facet Luka Gartner, Edan Lerner
author_sort Luka Gartner, Edan Lerner
title Nonlinear modes disentangle glassy and Goldstone modes in structural glasses
title_short Nonlinear modes disentangle glassy and Goldstone modes in structural glasses
title_full Nonlinear modes disentangle glassy and Goldstone modes in structural glasses
title_fullStr Nonlinear modes disentangle glassy and Goldstone modes in structural glasses
title_full_unstemmed Nonlinear modes disentangle glassy and Goldstone modes in structural glasses
title_sort nonlinear modes disentangle glassy and goldstone modes in structural glasses
publisher SciPost
series SciPost Physics
issn 2542-4653
publishDate 2016-12-01
description One outstanding problem in the physics of glassy solids is understanding the statistics and properties of the low-energy excitations that stem from the disorder that characterizes these systems' microstructure. In this work we introduce a family of algebraic equations whose solutions represent collective displacement directions (modes) in the multi-dimensional configuration space of a structural glass. We explain why solutions of the algebraic equations, coined nonlinear glassy modes, are quasi-localized low-energy excitations. We present an iterative method to solve the algebraic equations, and use it to study the energetic and structural properties of a selected subset of their solutions constructed by starting from a normal mode analysis of the potential energy of a model glass. Our key result is that the structure and energies associated with harmonic glassy vibrational modes and their nonlinear counterparts converge in the limit of very low frequencies. As nonlinear modes never suffer hybridizations, our result implies that the presented theoretical framework constitutes a robust alternative definition of `soft glassy modes' in the thermodynamic limit, in which Goldstone modes overwhelm and destroy the identity of low-frequency harmonic glassy modes.
url https://scipost.org/SciPostPhys.1.2.016
work_keys_str_mv AT lukagartneredanlerner nonlinearmodesdisentangleglassyandgoldstonemodesinstructuralglasses
_version_ 1725343835968503808