Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum
Light is an important stimulus for fungi as it regulates many diverse and important biological processes. Metarhizium acridum is an entomopathogenic fungus currently used for the biological control of insect pests. The success of this approach is heavily dependent on tolerance to environmental stres...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Oxford University Press
2019-09-01
|
Series: | G3: Genes, Genomes, Genetics |
Subjects: | |
Online Access: | http://g3journal.org/lookup/doi/10.1534/g3.119.400430 |
id |
doaj-919dcf1dc41a4919becaaa77ecb86d03 |
---|---|
record_format |
Article |
spelling |
doaj-919dcf1dc41a4919becaaa77ecb86d032021-07-02T07:23:42ZengOxford University PressG3: Genes, Genomes, Genetics2160-18362019-09-01992951296110.1534/g3.119.40043016Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridumGuilherme T. P. BranciniMárcia E. S. FerreiraDrauzio E. N. RangelGilberto Ú. L. BragaLight is an important stimulus for fungi as it regulates many diverse and important biological processes. Metarhizium acridum is an entomopathogenic fungus currently used for the biological control of insect pests. The success of this approach is heavily dependent on tolerance to environmental stresses. It was previously reported that light exposure increases tolerance to ultraviolet radiation in M. acridum. There is no information in the literature about how light globally influences gene expression in this fungus. We employed a combination of mRNA-Sequencing and high-throughput proteomics to study how light regulates gene expression both transcriptionally and post-transcriptionally. Mycelium was exposed to light for 5 min and changes at the mRNA and protein levels were followed in time-course experiments for two and four hours, respectively. After light exposure, changes in mRNA abundance were observed for as much as 1128 genes or 11.3% of the genome. However, only 57 proteins changed in abundance and at least 347 significant changes at the mRNA level were not translated to the protein level. We observed that light downregulated subunits of the eukaryotic translation initiation factor 3, the eIF5A-activating enzyme deoxyhypusine hydroxylase, and ribosomal proteins. We hypothesize that light is perceived as a stress by the cell that responds to it by reducing translational activity. Overall, our results indicate that light acts both as a signal and a stressor to M. acridum and highlight the importance of measuring protein levels in order to fully understand light responses in fungi.http://g3journal.org/lookup/doi/10.1534/g3.119.400430lighttranscriptomicsproteomicsMetarhiziumstress |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Guilherme T. P. Brancini Márcia E. S. Ferreira Drauzio E. N. Rangel Gilberto Ú. L. Braga |
spellingShingle |
Guilherme T. P. Brancini Márcia E. S. Ferreira Drauzio E. N. Rangel Gilberto Ú. L. Braga Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum G3: Genes, Genomes, Genetics light transcriptomics proteomics Metarhizium stress |
author_facet |
Guilherme T. P. Brancini Márcia E. S. Ferreira Drauzio E. N. Rangel Gilberto Ú. L. Braga |
author_sort |
Guilherme T. P. Brancini |
title |
Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum |
title_short |
Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum |
title_full |
Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum |
title_fullStr |
Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum |
title_full_unstemmed |
Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum |
title_sort |
combining transcriptomics and proteomics reveals potential post-transcriptional control of gene expression after light exposure in metarhizium acridum |
publisher |
Oxford University Press |
series |
G3: Genes, Genomes, Genetics |
issn |
2160-1836 |
publishDate |
2019-09-01 |
description |
Light is an important stimulus for fungi as it regulates many diverse and important biological processes. Metarhizium acridum is an entomopathogenic fungus currently used for the biological control of insect pests. The success of this approach is heavily dependent on tolerance to environmental stresses. It was previously reported that light exposure increases tolerance to ultraviolet radiation in M. acridum. There is no information in the literature about how light globally influences gene expression in this fungus. We employed a combination of mRNA-Sequencing and high-throughput proteomics to study how light regulates gene expression both transcriptionally and post-transcriptionally. Mycelium was exposed to light for 5 min and changes at the mRNA and protein levels were followed in time-course experiments for two and four hours, respectively. After light exposure, changes in mRNA abundance were observed for as much as 1128 genes or 11.3% of the genome. However, only 57 proteins changed in abundance and at least 347 significant changes at the mRNA level were not translated to the protein level. We observed that light downregulated subunits of the eukaryotic translation initiation factor 3, the eIF5A-activating enzyme deoxyhypusine hydroxylase, and ribosomal proteins. We hypothesize that light is perceived as a stress by the cell that responds to it by reducing translational activity. Overall, our results indicate that light acts both as a signal and a stressor to M. acridum and highlight the importance of measuring protein levels in order to fully understand light responses in fungi. |
topic |
light transcriptomics proteomics Metarhizium stress |
url |
http://g3journal.org/lookup/doi/10.1534/g3.119.400430 |
work_keys_str_mv |
AT guilhermetpbrancini combiningtranscriptomicsandproteomicsrevealspotentialposttranscriptionalcontrolofgeneexpressionafterlightexposureinmetarhiziumacridum AT marciaesferreira combiningtranscriptomicsandproteomicsrevealspotentialposttranscriptionalcontrolofgeneexpressionafterlightexposureinmetarhiziumacridum AT drauzioenrangel combiningtranscriptomicsandproteomicsrevealspotentialposttranscriptionalcontrolofgeneexpressionafterlightexposureinmetarhiziumacridum AT gilbertoulbraga combiningtranscriptomicsandproteomicsrevealspotentialposttranscriptionalcontrolofgeneexpressionafterlightexposureinmetarhiziumacridum |
_version_ |
1721336166340362240 |