A Topology Control with Energy Balance in Underwater Wireless Sensor Networks for IoT-Based Application

As part of the IoT-based application, underwater wireless sensor networks (UWSN), which are typically self-organized heterogeneous wireless network, are one of the research hot-spots using various sensors in marine exploration and water environment monitoring application fields, recently. Due to the...

Full description

Bibliographic Details
Main Authors: Zhen Hong, Xiaoman Pan, Ping Chen, Xianchuang Su, Ning Wang, Wenqi Lu
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Sensors
Subjects:
IoT
Online Access:http://www.mdpi.com/1424-8220/18/7/2306
Description
Summary:As part of the IoT-based application, underwater wireless sensor networks (UWSN), which are typically self-organized heterogeneous wireless network, are one of the research hot-spots using various sensors in marine exploration and water environment monitoring application fields, recently. Due to the serious attenuation of radio in water, acoustic or hybrid communication is a usual way for transmitting information among nodes, which dissipates much more energy to prevent the network failure and guarantee the quality of service (QoS). To address this issue, a topology control with energy balance, namely TCEB, is proposed for UWSN to overcome time-delay and other interference, as well as make the entire network load balance. With the given underwater network model and its specialized energy consumption model, we introduce the non-cooperative-game-based scheme to select the nodes with better performance as the cluster-heads. Afterwards, the intra-cluster and inter-cluster topology construction are, respectively, to form the effective communication links of the intra-cluster and inter-cluster, which aim to build energy-efficient topology to reduce energy consumption. With the demonstration of the simulation, the results show the proposed TCEB has better performance on energy-efficiency and throughput than three other representative algorithms in complex underwater environments.
ISSN:1424-8220