Positive periodic solutions of functional discrete systems and population models

<p/> <p>We apply a cone-theoretic fixed point theorem to study the existence of positive periodic solutions of the nonlinear system of functional difference equations <it>x</it>(<it>n</it>+1) = <it>A</it>(<it>n</it>)<it>x</it>(&...

Full description

Bibliographic Details
Main Authors: Tisdell Christopher C, Raffoul Youssef N
Format: Article
Language:English
Published: SpringerOpen 2005-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2005/984976
id doaj-917b56a478da4128ad9ef1c8cca75610
record_format Article
spelling doaj-917b56a478da4128ad9ef1c8cca756102020-11-25T00:09:33ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472005-01-0120053984976Positive periodic solutions of functional discrete systems and population modelsTisdell Christopher CRaffoul Youssef N<p/> <p>We apply a cone-theoretic fixed point theorem to study the existence of positive periodic solutions of the nonlinear system of functional difference equations <it>x</it>(<it>n</it>+1) = <it>A</it>(<it>n</it>)<it>x</it>(<it>n</it>) + <it>f</it>(<it>n</it>,<it>x</it><sub><it>n</it></sub>).</p>http://www.advancesindifferenceequations.com/content/2005/984976
collection DOAJ
language English
format Article
sources DOAJ
author Tisdell Christopher C
Raffoul Youssef N
spellingShingle Tisdell Christopher C
Raffoul Youssef N
Positive periodic solutions of functional discrete systems and population models
Advances in Difference Equations
author_facet Tisdell Christopher C
Raffoul Youssef N
author_sort Tisdell Christopher C
title Positive periodic solutions of functional discrete systems and population models
title_short Positive periodic solutions of functional discrete systems and population models
title_full Positive periodic solutions of functional discrete systems and population models
title_fullStr Positive periodic solutions of functional discrete systems and population models
title_full_unstemmed Positive periodic solutions of functional discrete systems and population models
title_sort positive periodic solutions of functional discrete systems and population models
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
1687-1847
publishDate 2005-01-01
description <p/> <p>We apply a cone-theoretic fixed point theorem to study the existence of positive periodic solutions of the nonlinear system of functional difference equations <it>x</it>(<it>n</it>+1) = <it>A</it>(<it>n</it>)<it>x</it>(<it>n</it>) + <it>f</it>(<it>n</it>,<it>x</it><sub><it>n</it></sub>).</p>
url http://www.advancesindifferenceequations.com/content/2005/984976
work_keys_str_mv AT tisdellchristopherc positiveperiodicsolutionsoffunctionaldiscretesystemsandpopulationmodels
AT raffoulyoussefn positiveperiodicsolutionsoffunctionaldiscretesystemsandpopulationmodels
_version_ 1725411360301383680