A Sub-Synchronous Oscillation Suppression Strategy for Doubly Fed Wind Power Generation System

During the power transmission of doubly-fed induction generator (DFIG), due to the influence of series compensating capacitance and long-distance transmission, DFIG is prone to sub-synchronous oscillation, which damages the stability of the system. By establishing the mathematical model of DFIG syst...

Full description

Bibliographic Details
Main Authors: Fanyi Meng, Dongyang Sun, Kai Zhou, Jun Wu, Fanqi Zhao, Li Sun
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9448275/
Description
Summary:During the power transmission of doubly-fed induction generator (DFIG), due to the influence of series compensating capacitance and long-distance transmission, DFIG is prone to sub-synchronous oscillation, which damages the stability of the system. By establishing the mathematical model of DFIG system, the cause of sub-synchronous oscillation and its influence on the control strategy of DFIG system are discussed. In order to solve the problem of performance degradation of traditional phase-locked loop (PLL) under sub-synchronous oscillation, an improved PLL is proposed to replace the traditional PLL. Aiming at the problem that the control of rotor side converter(RSC) and grid side converter(GSC) in doubly-fed wind power generation system under sub-synchronous oscillation is disturbed by harmonic signals, a control method of adding a quasi resonant controller in the control link of RSC and GSC to suppress sub-synchronous oscillation is proposed, and the feasibility of the method is verified by simulation and experiment. Finally, based on the research process of RSC direct resonance control, the sub-synchronous oscillation suppression strategy based on harmonic current extraction is proposed for the frequency adaptability of the quasi resonant controller. The actual performance of the sub-synchronous oscillation suppression strategy is verified through simulation and experiment. The experimental results show that the strategy is effective.
ISSN:2169-3536