A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca2+ permeability
Little is known about the impact of de novo and inherited missense mutations in the NMDA receptor M4 transmembrane helices. In this study, the authors use functional and computational approaches to demonstrate how mutations to conserved glycine sites within this region cause structural rearrangement...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-09-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-06145-w |
Summary: | Little is known about the impact of de novo and inherited missense mutations in the NMDA receptor M4 transmembrane helices. In this study, the authors use functional and computational approaches to demonstrate how mutations to conserved glycine sites within this region cause structural rearrangement, altered receptor deactivation and calcium permeability. |
---|---|
ISSN: | 2041-1723 |