A parameter identification problem in stochastic homogenization

In porous media physics, calibrating model parameters through experiments is a challenge. This process is plagued with errors that come from modelling, measurement and computation of the macroscopic observables through random homogenization – the forward problem – as we...

Full description

Bibliographic Details
Main Authors: Legoll Frédéric, Minvielle William, Obliger Amaël, Simon Marielle
Format: Article
Language:English
Published: EDP Sciences 2015-01-01
Series:ESAIM: Proceedings and Surveys
Online Access:http://dx.doi.org/10.1051/proc/201448008
id doaj-91078a69dbd843e7a1aed87bad83c3c3
record_format Article
spelling doaj-91078a69dbd843e7a1aed87bad83c3c32021-07-15T14:10:26ZengEDP SciencesESAIM: Proceedings and Surveys2267-30592015-01-014819021410.1051/proc/201448008proc144808A parameter identification problem in stochastic homogenizationLegoll FrédéricMinvielle WilliamObliger AmaëlSimon Marielle0UMPA, UMR-CNRS 5669, ENS LyonIn porous media physics, calibrating model parameters through experiments is a challenge. This process is plagued with errors that come from modelling, measurement and computation of the macroscopic observables through random homogenization – the forward problem – as well as errors coming from the parameters fitting procedure – the inverse problem. In this work, we address these issues by considering a least-square formulation to identify parameters of the microscopic model on the basis on macroscopic observables, including homogenized coefficients. In particular, we discuss the selection of the macroscopic observables which we need to know in order to uniquely determine these parameters. To gain a better intuition and explore the problem without a too high computational load, we mostly focus on the one-dimensional case. We show that the Newton algorithm can be efficiently used to robustly determine optimal parameters, even when some small statistical noise is present in the system.http://dx.doi.org/10.1051/proc/201448008
collection DOAJ
language English
format Article
sources DOAJ
author Legoll Frédéric
Minvielle William
Obliger Amaël
Simon Marielle
spellingShingle Legoll Frédéric
Minvielle William
Obliger Amaël
Simon Marielle
A parameter identification problem in stochastic homogenization
ESAIM: Proceedings and Surveys
author_facet Legoll Frédéric
Minvielle William
Obliger Amaël
Simon Marielle
author_sort Legoll Frédéric
title A parameter identification problem in stochastic homogenization
title_short A parameter identification problem in stochastic homogenization
title_full A parameter identification problem in stochastic homogenization
title_fullStr A parameter identification problem in stochastic homogenization
title_full_unstemmed A parameter identification problem in stochastic homogenization
title_sort parameter identification problem in stochastic homogenization
publisher EDP Sciences
series ESAIM: Proceedings and Surveys
issn 2267-3059
publishDate 2015-01-01
description In porous media physics, calibrating model parameters through experiments is a challenge. This process is plagued with errors that come from modelling, measurement and computation of the macroscopic observables through random homogenization – the forward problem – as well as errors coming from the parameters fitting procedure – the inverse problem. In this work, we address these issues by considering a least-square formulation to identify parameters of the microscopic model on the basis on macroscopic observables, including homogenized coefficients. In particular, we discuss the selection of the macroscopic observables which we need to know in order to uniquely determine these parameters. To gain a better intuition and explore the problem without a too high computational load, we mostly focus on the one-dimensional case. We show that the Newton algorithm can be efficiently used to robustly determine optimal parameters, even when some small statistical noise is present in the system.
url http://dx.doi.org/10.1051/proc/201448008
work_keys_str_mv AT legollfrederic aparameteridentificationprobleminstochastichomogenization
AT minviellewilliam aparameteridentificationprobleminstochastichomogenization
AT obligeramael aparameteridentificationprobleminstochastichomogenization
AT simonmarielle aparameteridentificationprobleminstochastichomogenization
AT legollfrederic parameteridentificationprobleminstochastichomogenization
AT minviellewilliam parameteridentificationprobleminstochastichomogenization
AT obligeramael parameteridentificationprobleminstochastichomogenization
AT simonmarielle parameteridentificationprobleminstochastichomogenization
_version_ 1721300265113485312