Partitioning of functional gene expression data using principal points
Abstract Background DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be...
Main Authors: | Jaehee Kim, Haseong Kim |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2017-10-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-017-1860-0 |
Similar Items
-
Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering
by: Rahmatina Hidayati, et al.
Published: (2021-05-01) -
Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas pada Cakupan Imunisasi Dasar Lengkap
by: Pelsri Ramadar Noor Saputra, et al.
Published: (2020-12-01) -
Genetic k-Means Clustering Approach for Mapping Human Vulnerability to Chemical Hazards in the Industrialized City: A Case Study of Shanghai, China
by: Weihua Zeng, et al.
Published: (2013-06-01) -
Kombinasi Single Linkage Dengan K-Means Clustering Untuk Pengelompokan Wilayah Desa Kabupaten Pemalang
by: Sintiya Sintiya, et al.
Published: (2021-06-01) -
Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation
by: José Pedro Faria, et al.
Published: (2016-11-01)