Investigating Heavy Water Zero Power Reactors with a New Core Configuration Based on Experiment and Calculation Results

The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18–20 cm. Based on regulations, prior to the first operation of the reactor, a new core...

Full description

Bibliographic Details
Main Authors: Zahra Nasrazadani, Raana Salimi, Afrooz Askari, Jamshid Khorsandi, Mohammad Mirvakili, Mohammad Mashayekh
Format: Article
Language:English
Published: Elsevier 2017-02-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S173857331630105X
Description
Summary:The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18–20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)–CITATON codes. To investigate the criticality of this core, the effective multiplication factor (Keff) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of D2O, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.
ISSN:1738-5733