Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring

Analysis of the GRSW-A model coupled into the FALCON code is extended by simulation of central void formation in fuel pellets due to high-temperature fuel restructuring. The extended calculation is verified against published, well-known experimental data. Good agreement with the data for a central v...

Full description

Bibliographic Details
Main Author: Grigori Khvostov
Format: Article
Language:English
Published: Elsevier 2018-10-01
Series:Nuclear Engineering and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573318303887
Description
Summary:Analysis of the GRSW-A model coupled into the FALCON code is extended by simulation of central void formation in fuel pellets due to high-temperature fuel restructuring. The extended calculation is verified against published, well-known experimental data. Good agreement with the data for a central void diameter in pellets of the rod irradiated in an Experimental Breeder Reactor is shown. The new calculation methodology is employed in comparative analysis of modern BWR fuel behavior under assumed high-power operation. The initial fuel porosity is shown to have a major effect on the predicted central void diameter during the operation in question. Discernible effects of a central void on peak fuel temperature and Pellet-Cladding Mechanical Interaction (PCMI) during a simulated power ramp are shown. A mitigating effect on PCMI is largely attributed to the additional free volume in the pellets into which the fuel can creep due to internal compressive stresses during a power ramp. Keywords: GRSW-A model, FALCON code, High-temperature restructuring, Central void formation
ISSN:1738-5733